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Model predictive control (MPC) frameworks have been effective in collision avoidance, stabilization, and path tracking for automated
vehicles in real-time. These MPC formulations use a variety of vehicle models that capture specific aspects of vehicle handling,
focusing either on low-speed scenarios or highly dynamic maneuvers. However, these models individually are unable to handle all
operating regions with the same performance. This work introduces a novel linearization of a brush tire model that is affine, time-
varying, and effective at any speed. We incorporate this tire model into a convex MPC formulation for lateral control on a low friction
surface. Experimental results on an automated Volkswagen Golf GTI demonstrate effective steering control for path tracking from a
standstill up to the limits of tire-road friction.

1 INTRODUCTION

Model predictive control (MPC) frameworks have been effective
in collision avoidance, stabilization, and path tracking for auto-
mated vehicles [1], [2]. These control formulations utilize vehi-
cle models to solve optimization problems in real-time and must
therefore balance model accuracy and computational efficiency.
As a result, vehicle models are tailored for high performance in
a subset of the vehicle’s operating regime, but at a cost of being
less accurate or even unusable in others. The unique benefits and
limitations of different vehicle models pose major hurdles when
designing a cohesive controller that can handle both stop-and-go
traffic and driving at the limits of tire-road friction.

The kinematic vehicle model is an attractive choice for path
planning and tracking for normal driving scenarios with low lat-
eral accelerations. It has acceptable online computational perfor-
mance despite the nonlinearity of the model. Chu et. al. leverage
the simplicity of the model to generate kinematically feasible
trajectories for path planning and obstacle avoidance [3]. Schild-
bach and Borelli incorporate the kinematic model into an MPC
approach for performing safe lane changes on highways [4]. But
because the model assumes no tire slip and omits a model of tire-
road interaction, it becomes unsuitable for control at high lateral
accelerations. Incorporating a high-fidelity tire model would im-
prove the prediction accuracy of the system dynamics across op-
erating regimes. For example, the LuGre dynamic friction tire
model accurately captures tire dynamics over a broad range of
motion, even when crossing zero velocity [5], [6]. However, be-
cause this model utilizes a large number of states, the added com-
putational load in integrating these states is prohibitive for robust
real-time control. Especially for controllers that solve an opti-
mization problem, such as model predictive control, this com-
plexity limits the execution speed of the controller.

Dynamic vehicle models that incorporate a brush-tire model
take into account tire slip, unlike the kinematic model, yet are
much simpler and have fewer states than the LuGre model. These
models have been integrated into various controllers for real ve-
hicles up to the limits of friction when leveraging convex op-
timization techniques. Brown et al. developed a model predic-
tive controller (MPC) that solves an optimization problem to
handle the potentially competing objectives of vehicle stability
and environmental constraints in real-time [1] . The optimiza-
tion returns a series of lateral tire force inputs which is then

converted into steer angle commands by inverting a brush tire
model. Carvalho et al. used an iteratively linearized form of the
dynamic vehicle model, and the vehicle was able to successfully
maneuver around obstacles on low-friction, snowy roads [2].
However, both Brown and Carvalho estimate lateral tire forces
generated by relying on tire slip angles, a parameter that be-
comes undefined at zero longitudinal speed. Existing ad-hoc so-
lutions for stop-and-go maneuvers involve switching to a kine-
matic model or disabling the controller below a specific longi-
tudinal speed. Although the dynamic vehicle model is effective
for high speeds and lateral accelerations, the singularity at zero
longitudinal speed prohibits the model from being effective in
urban situations.

This paper presents a dynamic vehicle model that uses a mod-
ified tire model to predict accurate tire-road forces from stand-
still up to high lateral accelerations. The tire model leverages
successive linearizations of the Fiala tire model to address the
singularity at zero speed. No additional states or switching con-
ditions are introduced, compromising neither run-time efficiency
nor smooth behavior of the system. An overview of the dynamic
vehicle model and the Fiala tire model is covered in section 2.
Section 3 elaborates on the modifications for low-speed. This
affine, time-varying model is validated in a convex MPC frame-
work for lateral control, described in section 4, and experimental
results from a full-scale autonomous vehicle are shown in sec-
tion 5. In particular, the vehicle in Figure 1 is brought to a stop
on a curved roadway as well as pushed to the limits on a snow-
covered skidpad.

Figure 1: Automated Volkswagen Golf GTI vehicle research
platform.
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Figure 2: Single-track dynamic vehicle model along a path.

2 VEHICLE MODEL

The continuous-time dynamic bicycle model in Figure 2, with
lumped front and rear wheels, has three vehicle states: longitudi-
nal velocity Ux, lateral velocity Uy, and yaw rate r. Additionally,
we consider three positional states relative to a desired path: the
distance along the path s, the lateral error from the path e, and
the angle from the road heading to the vehicle heading ∆ψ. As-
suming Ux, s, and path curvature κ are known and using small
angle assumptions, the equations of motion that describe the lat-
eral motion relative to a path are then

U̇y =
Fyf + Fyr

m
− rUx (1a)

ṙ =
aFyf − bFyr

Iz

(1b)

ė = Ux +Uy∆ψ (1c)

∆ψ̇ = r− κṡ (1d)

Fyf and Fyr are the lateral tire forces at the front and rear axles,
respectively. m and Iz are the mass and yaw inertial of the vehi-
cle, and a and b are distances from the center of mass to the front
and rear axles, respectively.

The front lateral tire force is a nonlinear function of the front
slip angle αf, which is the angle from the tire heading to the
velocity vector of the tire. This is defined in terms of the vehicle
states and steer input δ as

αf = arctan

(

Uy + ar

Ux

)

− δ (2)

The front slip angle can also be written using a decomposition of
the longitudinal and lateral velocities at the front axle, as in Fig-
ure 3. Taking the velocity components along and perpendicular
to the tire heading,

[

Uxtire

Uytire

]

=

[

cos δ sin δ
− sin δ cos δ

][

Ux

Uy + ar

]

=

[

Ux cos δ+ (Uy + ar) sin δ
−Ux sin δ+ (Uy + ar) cos δ

]

Front slip angle is therefore equivalently:

αf = arctan
Uytire

Uxtire

= arctan
−Ux sin δ+ (Uy + ar) cos δ

Ux cos δ+ (Uy + ar) sin δ
(3)

Notice that slip angle is defined assuming the vehicle is in mo-
tion and becomes undefined when the vehicle is at a standstill.

Uxtire
αf

δ
Ux

Uy + ar

Uytire

Figure 3: Front tire model with the longitudinal and lateral ve-
locity at the axle. Front slip angle can be calculated by taking the
velocity components along and perpendicular to the tire heading.

The single friction coefficient Fiala tire model as presented by
Pacejka [7] describes the lateral tire forces generated using slip
angle as an intermediate variable:

Fy =















−Cα tanα+
C2

α

3µFz
| tanα| tanα

−
C3

α

27µ2F 2
z
tan3α, |α| < atan

(

3µFz

Cα

)

−µFzsgn α, otherwise

(4)
where µ is the tire-road coefficient of friction, Cα is the tire cor-
nering stiffness, and Fz is the normal load at the front or rear
tire. The impact of longitudinal load transfer on the tire corner-
ing behavior can be captured by modifying the normal loads in
proportion to the longitudinal acceleration. The maximum lat-
eral tire force available is also affected by the throttle and brake
demands. A simplified coupled tire model is used to derate the
maximum lateral tire force based on longitudinal forces at each
tire. Using the friction circle as a constraint, the maximum lateral
force can be calculated using

F 2
x + F 2

y,max = (µFz)
2 (5)

where Fx is the longitudinal control input.
For frameworks that require convexity, an affine approxima-

tion of the tire curve can be used. Erlien et al. approximate this
nonlinear relation for the rear tires with an affine, time-varying
model that uses successive linearization points [8]. A similar
method can be applied at the front tires:

Fyf =
∂Fyf

∂αf

∣

∣

∣

∣

αf,0

(αf − αf,0) + Fyf(αf,0) (6)

which is simply a Taylor expansion about an operating point αf,0.
Assuming small angles for equation (2) and using steer angle as
the controller input, the system is represented by linear differen-
tial equations.

While these formulations are effective at nominal or high lat-
eral forces, the calculation of slip angle assumes a non-zero lon-
gitudinal velocity and begins to break down at low speeds. Even
if the denominator of the slip angle calculation was saturated at
a minimum value, this model does not accurately capture low
speed dynamics. If the vehicle is stopped, then regardless of the
steer angle, no significant lateral forces are generated, and the
vehicle is unable to move laterally.

3 LOW SPEED FORMULATION

The desired properties of an effective front tire model are (a)
it is well-defined and continuous at any longitudinal velocity,
(b) at zero longitudinal velocity, changing the steer angle has no
effect on the lateral tire forces, and (c) at higher velocities and
lateral accelerations, it approximates the Fiala tire model. Taking
inspiration from the tire model in equation (4), we will formulate
a modified tire model with these attributes.



An affine approximation to the front tire model can be formu-
lated by using a first-order Taylor expansion with respect to the
vehicle states and controller input directly. This bypasses cal-
culating slip angles, which only exist at non-zero speed, as an
intermediate step. The full Taylor expansion of the variables δ,
Uy , and r about an operating point p = (δ0,Uy0, r0) is

Fyf(δ,Uy, r) =Fyf((δ0,Uy0, r0)) +
∂Fyf

∂δ

∣

∣

∣

∣

p

(δ− δ0)+
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p
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(7)

The partial derivative of the lateral tire force with respect to steer
angle, lateral velocity, and yaw rate can be rewritten using the
chain rule

∂Fyf

∂δ
=

∂Fyf

∂ tanαf

∂ tanαf

∂δ
(8)

and similarly for the partial derivatives with respect to the states.
Then using equations (3) and (4),

∂Fyf

∂ tanαf

= −Cαf
+

2C2
αf

3µFz

| tanαf| −
C3

αf

9µ2F 2
z

tan2αf (9)

∂ tanαf

∂δ
=

−(U2
x + (Uy + ar)2)

(Ux cos δ+ (Uy + ar) sin δ)2
(10)

∂ tanαf

∂Uy

=
Ux

(Ux cos δ+ (Uy + ar) sin δ)2
(11)

∂ tanαf

∂r
=

aUx

(Ux cos δ+ (Uy + ar) sin δ)2
(12)

The denominators of tanαf in equation (3) and (10)-(12) may
still evaluate to zero when the vehicle is at rest. Utilizing these
equations with added saturation allows us to define a modified
tire model that has the desired properties listed at the beginning
of this section.

We define the following variables ξ, ξFy
, and ξδ that are anal-

ogous to tanαf as expressed in equation (3),
∂Fy

∂ tanα
in equation

(9), and ∂ tanαf

∂δ
in equation (10), respectively:

ξ ,
−Ux sin δ+ (Uy + ar) cos δ

min(Ux cos δ+ (Uy + ar) sin δ, ǫ)
(13)

ξFy
, −Cαf

+
2C2

αf

3µFz

|ξ| −
C3

αf

9µ2F 2
z

ξ2 (14)

ξδ ,
−(U2

x + (Uy + ar)2)

min((Ux cos δ+ (Uy + ar) sin δ)2, ǫ)
(15)

The saturation value ǫ is chosen to be 0.5 m/s. The partial deriva-
tive of the lateral tire force with respect to steer angle using ξ is
referred to as the steering authority of the system and can be
redefined using the modified equation:

∂Fyf

∂δ
, ξFy

ξδ (16)

Using this formulation simultaneously produces a continuous,
non-singular function at all longitudinal velocities and captures
the desired behavior between longitudinal velocity and steering
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Figure 4: ξδ with a saturated denominator ǫ of 0.5 m/s. As the
longitudinal velocity approaches a standstill, both ξδ and steer-
ing authority go to zero.

for lateral tire force generation. As Ux approaches 0 m/s, ξδ ap-
proaches 0. Figure 4 displays the relationship between longitu-
dinal speed and ξδ using experimental data from a straight line

deceleration. Since ξδ is directly related to
∂Fyf

∂δ
, the steering au-

thority also approaches 0 N/rad. When steering authority is zero,
changing the steer angle has no impact on the forces generated
at the front tires. This behavior is more accurate than the origi-
nal linearization of the Fiala tire model at low speeds, where the
lateral tire curve remains the same at all longitudinal speeds for
well-defined slip angles. The modifications to the partial deriva-
tives with respect to input only change the tire model behavior
from the original Fiala model below 0.5 m/s. At higher longitu-
dinal velocities, these models are exactly equal.

The partial derivatives with respect to lateral velocity and yaw
rate, both for the front and the rear tires, can be modified in a
similar manner. We define these partials for the front tires with
our modified expressions as

∂Fyf

∂Uy

, ξFy
ξUy

(17)

∂Fyf

∂r
, ξFy

ξr (18)

where ξUy
and ξr are equal to equations (11) and (12). For nu-

merical stability, the minimum Ux used to calculate these ex-
pressions is set to 1 × 10−6 m/s. The resulting variables reflect
the desired behavior: if the vehicle is sliding sideways or yawing
with little or no longitudinal motion, then large lateral forces are
being generated. The vehicle becomes an extremely stiff system
as the longitudinal velocity approaches zero.

4 MODEL PREDICTIVE CONTROL FORMULATION

We incorporate this modified vehicle model into a convex model
predictive control (MPC) framework for steering. MPC involves
solving an optimization problem for a series of inputs over a fi-
nite, receding horizon. It can explicitly handle constraints on the
system and find an optimal solution according to a cost func-
tion. Only the first input is commanded to the system, then the
optimization problem is updated with current measurements and
re-solved at the next time step.

The equations (1) are convex assuming the longitudinal in-
formation Ux and s are known throughout the prediction hori-
zon and are not solved for in the same optimization as δ. To
accomplish this, a desired speed profile is generated a priori and
then tracked via a separate feedback-feedforward controller. Us-
ing the desired longitudinal behavior along the prediction hori-
zon and accounting for weight transfer, the MPC formulation
utilizes the coupled tire model to derate the available force for
lateral motion.
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Figure 5: Snow-covered oval track. The vehicle is at a standstill
in the turn but anticipates accelerating to resume tracking the
desired speed and path over the prediction horizon.

These equations of motion in section 2 describe the continu-
ous dynamic model, which is first linearized about an operating
point, as described in section 3. The continuous-time matrices
must subsequently be discretized at each step in the prediction
horizon in order to be implemented in an MPC framework. The
discretization of the these matrices via the matrix exponential
not only provides an exact discretization, but it also consistently
produces real-valued and bounded discrete time matrices for stiff
systems. For the low-speed formulation in section 3, as the ve-
hicle approaches zero longitudinal velocity, the magnitudes of
the partial derivatives with respect to the states are large. Using
the matrix exponential to discretize the system at each step in
the prediction horizon numerically converts these large, nega-
tive, continuous-time derivatives into values approaching zero.

The metrics penalized in the cost function are the change in
steer input between time steps, lateral error, and heading error
from the path. Penalizing the rate of input change v in a weight-
ing matrix R mitigates control effort and helps ensure smooth
steering. A similar matrix Q for lateral and heading error pro-
motes path tracking. Formally, the optimization problem for state
vector x = [Uy r ∆ψ e]⊤ and input δ is

minimize
δ

n
∑

k=0

v(k)⊤R(k)v(k) +
n
∑

k=1

x(k)⊤Q(k)x(k) (19a)

subject to x(k+1) = A(k)x(k) +B(k)δ(k) +C(k) (19b)

|δ(k)| ≤ δ
(k)
max (19c)

|v(k)| ≤ v
(k)
max (19d)

where v(k) = δ(k) − δ(k−1) is the change in steer angle, and

δ
(k)
max and v

(k)
max are physical limits in the steering system. The

matrices A, B, and C are constructed from equations (1) and (7)

evaluated atU
(k)
x , κ(k), and operating points δ

(k)
0 ,U

(k)
y0 , and r

(k)
0 .

5 EXPERIMENTAL RESULTS

We validate the model described in section 3 in a convex MPC
formulation to control the automated Volkswagen Golf GTI de-
picted in Figure 1. The optimization problem runs at a rate of
100 Hz and is solved using CVXGEN, developed by Mattingley
and Boyd [9]. The vehicle is equipped with a dual antenna Ox-
ford Technical Solutions RT4003 integrated inertial navigation
system and receives RTK differential correction information to
measure position states within 2 cm accuracy.
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Figure 6: Closed-loop and planned steering authority (top), steer
angle (middle), and longitudinal speed (bottom) plots for a stop-
ping maneuver on a curved path. When at a standstill, the vehicle
has zero steering authority to change the lateral tire forces pro-
duced.

We evaluate the path-tracking performance of the controller
with a stop-and-go maneuver as well as a high lateral accelera-
tion corner on a low friction track near the Arctic circle. The a
priori estimates of the road friction µ range from 0.26 to 0.32.
The MPC formulation optimistically uses a friction coefficient
0.32 in the tire-road model.

5.1 Stop-and-Go

The vehicle navigates the track at a constant 7.1 m/s according
to a speed profile until the corner exit of the oval, where the speed
profile goes to zero speed at a comfortable braking acceleration
of −2 m/s2.

The lateral controller steers smoothly around the curved sec-
tion of the track shown in Figure 5 even as the longitudinal
controller brings the vehicle to a complete stop. In the closed-
loop trajectory in Figure 6, as the longitudinal speed approaches
zero, the steering authority also quickly decreases to zero. When
the vehicle is stopped, no additional forces will be generated by
steering according to this model. The solution to the optimiza-
tion problem holds the steer angle at δ = 3.1◦. Because the sys-
tem lacks steering authority when stopped, this steer angle ap-
proaches the Ackermann steer angle that is needed to track the
path kinematically. For a vehicle with length L= 2.63 m follow-
ing a path with local curvature κ = 0.0237/m,

δacker = atan

(

L

R

)

= 3.46◦.

The steady-state steer angle is therefore appropriate for tracking
the path from a standstill. The controller plans to resume its orig-
inal trajectory when an external signal indicates that it is safe to
proceed. As seen in the horizon in Figure 6, this model predicts
that as the longitudinal velocity increases, the steering authority
is regained.



Right Tire

Left Tire

CG

Time [s]

L
o

n
g
it

u
d
in

al
V

el
o

ci
ty

[m
p
s]

68 70 72 74 76 78

0

5

10

15

Figure 7: Longitudinal velocity measured at the center of gravity
of the vehicle and estimated using wheel speed sensors of each
the front tires.

When the stop indicator is removed, the desired speed returns
to the original 7.1 m/s. Figure 7 shows the longitudinal speed
at the center of gravity as compared to the longitudinal speed at
both front tires, estimated from wheel speed sensors. The vehicle
applies a large amount of longitudinal force at t = 71.1s to accel-
erate on the slippery surface and initially does not gain traction
on either of the front wheels. As seen in Figure 8, the vehicle
yaws to the right unexpectedly, and lateral tire forces are gener-
ated. In conjunction with the relatively aggressive longitudinal
acceleration and the fact that the vehicle is front-wheel drive, the
front tires approach friction limits at t = 71.8s. The longitudinal
throttle demands derate the maximum lateral tire force available,
and steering authority decreases abruptly. A similar phenomenon
occurs at t = 72.8s.

Additionally, the vehicle stopped with a lateral error of 0.08 m
and a heading error of −0.75◦. Because the front tires spin and
the vehicle slips forward longitudinally, the vehicle overshoots
the path, unable to generate significant lateral tire forces to turn
to the left until the left tire gains traction at t = 72.4s. Despite
this, the maximum lateral error is just over 16 cm during this
maneuver.

Because the vehicle has an open differential, while the front
left wheel gains traction, the right front wheel continues to spin
due to a locally polished surface of the track. The front left wheel
is able to maneuver the vehicle to return to the path. When the
vehicle regains traction on both tires at t = 75.25s, the controller
resumes tracking the path normally. The vehicle recovers from
the disturbance, and the planned trajectory resumes matching the
closed-loop response. With the modified tire model, the steering
controller handles even this extreme case of high wheel slip at
very low vehicle speed.

5.2 Limit Path Tracking

The vehicle also performs well in terms of path-tracking and sta-
bility when experiencing high lateral accelerations, despite an
overestimate in the available tire-road friction coefficient used in
the model. Assuming the surface friction is µ = 0.32, the max-
imum steady-state longitudinal velocity that is achievable be-
fore sliding is 6.7 m/s. Circumnavigating the oval at the slightly
higher speed of 7.1 m/s, the vehicle fully saturates the vehicle’s
front and rear tires in the corner depicted in Figure 9 but manages
to stay within 35 cm of the desired path. The prediction horizons
in Figure 10 are shown at time t = 18.49s. The plan predicts that
steering authority decreases as the vehicle reaches the apex of
the turn. In closed-loop, because the available surface friction
is lower than the actual value, the front tires fully saturate be-
tween t = 21.2s and t = 22.2s. When the tires are saturated, the
model accurately determines that there is no steering authority,
and changing the steer angle will not produce additional lateral
tire force. The vehicle understeers since it is attempting a ma-
neuver beyond the friction limits, but the steer angle does not
grow unnecessarily large in the process.
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Figure 8: Accelerating from a standstill. As the vehicle yaws un-
expectedly starting at t = 71.2s (bottom), in conjunction with
the relatively aggressive longitudinal acceleration, the steering
authority (top) drops. Once traction is gained on the left tire at
t = 72.8s, the controller recovers from the disturbance and con-
tinues as planned.

6 CONCLUSIONS

We develop a dynamic vehicle model that can track a desired
path from a complete standstill to cornering at the limits of han-
dling by incorporating an affine tire model linearized with re-
spect to the states and input directly. The tire model demonstrates
the desired properties of being well-defined at all longitudinal
velocities, having no steering authority at zero speed, and being
exactly equal to the Fiala tire model at high longitudinal veloc-
ities. This formulation is validated in a model predictive control
scheme experimentally on a low friction oval track. The MPC
controller continues steering in an appropriate manner to track
the curve even as the longitudinal controller brings the vehicle
to a stop and slip angle becomes undefined. When the vehicle
accelerates back to the desired speed, the model accurately re-
sponds to the yaw rate disturbance and the longitudinal forces
derating the total amount of available lateral tire force. Because
of a lack of available tire force, the controller predicts that steer-
ing authority is zero and the vehicle avoids overcorrecting for
understeer.
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Figure 9: Prediction horizon during a high lateral acceleration
corner.
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