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Abstract— Driving through traffic often involves sequences of
distinct maneuvers, for example changing lanes and overtaking
slower vehicles. To assist drivers in these situations, a system
for shared decision making and control (SDMC) is developed,
taking inspiration from the lead-follow relationship in partner
dancing. The SDMC system plans maneuvers through parallel
nonlinear optimizations, infers the driver’s intended maneuver,
and shares control over steering, throttle, and braking actuators
to jointly execute the maneuver. Experimental results in over-
taking and lane changing scenarios demonstrate the driver’s
ability to guide the system through sequences of maneuvers
and the system’s support of the driver via shared lateral and
longitudinal control.

I. INTRODUCTION

Humans reason at multiple levels of control while driving
vehicles. Although drivers’ ultimate input to the vehicle is a
combination of steering, throttle, and braking, these lower
level actuator commands are inherently linked to higher
level goals. Complex situations such as overtaking require
the driver to execute series of maneuvers with different
control objectives, for example following and passing another
vehicle. New interaction concepts and designs for advanced
driver assistance systems (ADAS) that share both decision
making and control with the driver represent an opportunity
to support drivers in these scenarios.

A challenge when considering such systems is the large
space of possible ADAS designs. Within this design space,
one must determine methods for communication of and
agreement on maneuver choice, shared control authority
over each actuator, physical interfaces for human-machine
interaction, and sensory feedback experienced by the driver.
Design metaphors, such as Flemisch et al.’s “H-metaphor”
describing the relationship between rider and horse, offer
an approach for addressing large design spaces [1]. The
“H-mode” system based on this metaphor explores intuitive
haptic interactions over the steering wheel and pedals and
enables the driver to choose different modes of shared control
while driving [2]. Other metaphors have been proposed for
shared vehicle control, such as the aviation pilot-student
relationship and joint carrying of a cumbersome object [3].

Despite the usefulness of these metaphors for the develop-
ment of cooperation at the control level, the question remains
of how to structure interactions in driving scenarios that
involve a combination of discrete decision making and con-
tinuous control. To answer this question, we take inspiration
from a different metaphor: partner dancing. Making use of
the lead-follow structure in partner dancing, we consider how
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the driver, as the leader, could guide the system through se-
quences of maneuvers. From this perspective, there emerges
a clear division of responsibility in decision making – which
is critical to avoid mode confusion – and novel concepts
for communicating discrete maneuvers through lower level
inputs.

While newly applied in this work to driver-ADAS in-
teractions, there exists previous research exploring partner
dancing and similar forms of co-motion in broader human-
robot interaction settings. The lead-follow structure underly-
ing partner dance has been studied for both human-human
teams [4] and human-robot teams [5] performing a motion
mirroring exercise, establishing guidance for collaborative
movement between agents with similar kinematics and actua-
tion. Specific to partner dancing, Granados et al. demonstrate
a robot leader that provides natural guidance to human
partners through center of mass height changes [6], and
Chen et al. investigate the acceptance of a partner dancing
robot by older adults that follows the human’s lead through
an admittance-based control scheme [7]. Here we extend
the partner dancing metaphor to the automotive domain, in
which new avenues of thought are needed for developing
intuitive maneuver-level communication and human-vehicle
co-motion.

Within this domain, one ADAS concept that gives the
driver direct decision making authority is supervisory con-
trol, in which the driver decides among a discrete set of
maneuvers, and the system autonomously executes the cho-
sen maneuver. In their implementation of the “Conduct-by-
Wire” concept, Kauer et al. present a system that receives an
explicit maneuver request from the driver via selections on a
touch screen and then autonomously controls the lower level
inputs to execute the chosen maneuver [8]. Similarly, Guo et
al. provide both discrete buttons and inferences based on the
driver’s steering wheel angle to detect lane change intentions
[9], and Walch et al. enable drivers to accept or reject the
system’s proposal to overtake another vehicle via a touch
screen interface [10]. A major attribute of these systems is
unambiguous maneuver-level decision making.

One drawback with supervisory control schemes, however,
is that drivers only intermittently provide an input to the
system and thus are not consistently in the control loop.
Certain pitfalls of automation may result with these systems
as discussed by de Winter et al., such as loss of situational
awareness and inability to safely regain control when the sys-
tem reaches the boundaries of its operational design domain
[11]. An alternative ADAS topology that mitigates these pit-
falls is shared control, in which the driver and system guide



Fig. 1. Testing our SDMC system on an experimental platform.

the vehicle together through continuously blended inputs on
the vehicle actuators. Although significant research on shared
control systems has focused on operation within a single
maneuver, there exist a few concepts that include a notion
of switching between multiple maneuvers. For example, Tsoi
et al. propose a haptic steering controller for lane changing
[12], and Anderson et al. present a constraint-based system
for navigating environments with static obstacles [13]. These
approaches have so far been limited in application, as they
focus on steering control in simple environments and are
therefore not suitable for more complex maneuvers requiring
the coordination of lateral and longitudinal inputs.

In this work, we present a shared decision making and con-
trol (SDMC) system inspired by a novel metaphor for driver-
ADAS interaction. Based on key concepts from partner danc-
ing, we design a system that plans maneuvers through a non-
linear model predictive control (NMPC) scheme, interprets
the driver’s high level intent from their control inputs, and
collaboratively executes the intended maneuver via shared
lateral and longitudinal control. The SDMC system leverages
the ability to compute safe and human-like trajectories in
real time with NMPC for different maneuvers in parallel.
The proposed system is tested on a Human&Vehicle-in-
the-Loop (Hu&ViL) platform that renders virtual scenarios
to the driver of a full-sized test vehicle, shown in Fig. 1.
System operation is demonstrated through overtaking and
lane changing experiments involving other dynamic traffic
participants.

II. DESIGN CONCEPTS

Useful design concepts for SDMC emerge through anal-
ogy to partner dancing, a form of dance in which two
individuals execute improvised sequences of moves together.
The remarkable ability of two expert partner dancers to
coordinate highly dynamic motion while physically coupled
to one another encourages the possibilities for collaboration
between driver and system in this work.

The underlying concept from partner dancing essential to
our SDMC system is the lead-follow relationship. Within this
structure, the leader is responsible for selecting dance moves
and communicating their choices to the follower through
haptic and visual cues. As Kaminsky notes, this asymmetric

relationship is necessary to avoid conflicts and successfully
navigate a crowded dance floor [14]. To guide the motion
of the partnership, the leader must indicate transitions be-
tween discrete moves from a common “vocabulary.” Gentry
explores this element of partner dancing, analyzing swing
dancing (a popular form of partner dance) as a finite state
machine that contains a small number of poses known to both
partners [15]. Having a mutually understood and relatively
limited set of possible moves enables the follower to infer a
discrete move from the subtle cues of the leader.

With these elements of partner dancing in mind, the
following concepts are used in the design of our SDMC
system:

• Driver as leader: the driver selects a maneuver and
communicates this intention to the system.

• System as follower: the system interprets the driver’s
preferred maneuver and shares control with the driver
to execute the maneuver.

• Maneuver vocabulary: there is a small set of possible
maneuvers generally understood between both agents.

• Multimodal communication: the driver and system in-
teract through a balance of haptic and visual cues.

Further, for practical implementation on a typical passenger
vehicle, system designs based around steer-by-wire and hap-
tic pedal technology are not feasible. Thus, the following
additional concepts are needed:

• Haptic shared steering control: the driver and system
each import torques on the steering column.

• Input-mixing shared longitudinal control: the throttle
and brake commands sent to vehicle actuators reflect
a combination of driver and system intentions.

We note that these two practical concepts are additionally
consistent with the partner dancing metaphor, in which
dancers share haptic interactions with their upper bodies
and rhythmically align their footwork without direct haptic
coupling.

III. SYSTEM DESIGN

A. Overview

The diagram in Fig. 2 shows an overview of our SDMC
system. The system contains three phases: planning, in-
ference, and execution. In the planning phase, the system
determines which maneuvers from a small set are available
and runs an NMPC optimization for each maneuver that takes
as input the ego vehicle state and the driver’s longitudinal
command. The result of these parallel optimizations is a
plan for each available maneuver containing trajectories of
lateral and longitudinal control inputs. These plans serve as
input to the inference phase, in which the system interprets
the driver’s intended maneuver by comparing the trajectories
with the driver’s inputs on the vehicle’s control interfaces, in-
cluding the turn signal. Once the system predicts the driver’s
intended maneuver, it jointly executes the maneuver with
the driver by computing a steering torque and a throttle or
braking command for shared vehicle control. The following
subsections describe these phases in more detail.
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Fig. 2. A graphical representation of the proposed system architecture.

B. Maneuver Vocabulary

Before planning trajectories, the system first needs knowl-
edge of which maneuvers it will collaboratively execute
with the driver. In this work, the maneuver vocabulary
is chosen for navigation of overtaking and lane changing
scenarios involving other moving vehicles. The following set
of distinct maneuvers enables a sufficiently wide range of
driving behaviors for the driver to guide the vehicle through
these scenarios.

1) Lane keep: without nearby vehicles in the ego vehicle’s
lane, the goal of this maneuver is to track a central
position within the lane and maintain a reasonable
speed given the road conditions.

2) Follow: when approaching another vehicle from be-
hind, the ego vehicle continues tracking the lane posi-
tion but modulates its speed to keep a safe following
distance.

3) Pass: a more decisive maneuver, the pass requires a
brief excursion into the opposing lane and an increase
in speed to get ahead of a slower moving vehicle in
the ego vehicle’s lane.

C. Planning

To follow the driver’s maneuver-level guidance, the system
should be able to compute safe, human-like, and versatile
trajectories that effectively utilize a combination of lateral
and longitudinal control inputs. This can be accomplished by
solving a nonlinear receding horizon optimal control problem
for each available maneuver. The NMPC problem minimizes
an objective function over a finite time horizon of N stages
separated in time by ∆t, resulting in a trajectory of vehicle
states x and inputs u that can be used to share control with
the driver while executing the maneuver. The input vector
u is comprised of δ , the steering angle, and Fx, the total
longitudinal force, which is positive for throttle commands
and negative for brake commands.

The NMPC scheme in this work builds on a controller
used in the fully autonomous decision making and control
architecture developed by Patterson [16]. The optimization

problem for each maneuver is:

minimize
x,u

N

∑
i=1

(
Ji
)
+ JN

lat + JN
heading (1a)

subject to x1 = xmeasured (1b)

xi+1 = fdis(xi,ui) (1c)

umin ≤ ui ≤ umax (1d)

u̇min ≤ u̇i ≤ u̇max (1e)
x ∈ Xhomotopy (1f)

where JN
lat and JN

heading are terminal costs on lateral position
and path heading deviation, fdis is a discretized dynamic
single track model used to encode vehicle dynamics con-
straints, control inputs ui and their rates u̇i are limited by
the actuation available on the vehicle, and set Xhomotopy
defines obstacle free driving corridors – termed homotopies
by Patterson – for each maneuver. The NMPC problem (1a)-
(1f) is implemented in CasADi, an open-source optimization
framework [17], and solved in real time with interior point
optimizer IPOPT [18].

The objective in (1a) has the following stagewise costs:

Ji = Ji
lat + Ji

long + Ji
heading + Ji

smooth + Ji
env + Ji

matchFx (2)

Lateral position cost Ji
lat and longitudinal motion cost Ji

long
translate the unique priorities of each maneuver, as described
in subsection III-B, into the optimization problem. The path
heading deviation cost Ji

heading, input slew rate cost Ji
smooth,

and environment cost Ji
env, which works to keep the ego vehi-

cle within the road bounds and collision free, are described
in more detail in [16]. Lastly, the Fx match cost Ji

matchFx
enables input-mixing shared control on throttle and braking
actuators. Following a similar approach to Schwarting et
al. [19], this term tracks the driver’s projected longitudinal
command F i

xDRV (as mapped directly from their throttle and
brake pedal positions) early in the horizon with a decaying
exponential function as

Ji
matchFx =WFx logcosh(F i

x −F i
xDRV )exp(−γi∆t) (3)

where WFx weights this term relative to other costs, and the
decay rate γ is chosen to prioritize the driver’s command
over the first ∼0.5 seconds of the horizon.

D. Inference

A key task of the system is inferring the driver’s intent
when more than one maneuver is available. This may occur,
for example, when the ego vehicle is close behind a lead
vehicle in an overtaking scenario, making both follow and
pass maneuvers possible. The driver should be able to indi-
cate their desired maneuver in a natural manner, conveying
intent using control interfaces available in a typical vehicle.

The system infers the driver’s preferred maneuver by
selecting the maneuver plan that minimizes the following
cost:

Jinfer =
N

∑
i=1

(
Ji

matchFx + Ji
matchδ

)
+ Jhyst + Jsignal (4)



The Fx and δ matching costs follow the form defined in (3),
enabling the system to determine which plan more closely
matches a weighted combination of the driver’s lateral and
longitudinal commands. With these terms alone, the system’s
inference can transition rapidly between plans given small
changes in the driver’s inputs on the steering wheel and
pedals. To avoid this chattering behavior, a hysteresis cost
Jhyst is added, which penalizes fast transitions between
maneuvers.

Regardless of how the hysteresis term is tuned, the driver
may need to provide exaggerated control inputs to prompt
a change in maneuver, for example steering hard to the left
and accelerating significantly to indicate the start of a passing
maneuver. This can be avoided by using the turn signal to
preempt a change of maneuvers, just as drivers typically use
their signal to communicate a lane change in the near future
to other drivers. Thus, the driver can influence the inference
cost with their turn signal as

Jsignal =

{
−JsignalMax

∆tsignal
∆tmax

, if ∆tsignal < ∆tmax

−JsignalMax, otherwise
(5)

where JsignalMax, the maximum signal cost, is gradually
subtracted from the inference cost corresponding to the
direction of the signal over a period of time ∆tmax scaled
by the time since the signal was activated ∆tsignal. The turn
signal provides an additional cue to the system, although –
unlike in discrete supervisory control schemes – the driver
still primarily communicates maneuver preference through a
combination of steering, throttle, and braking commands.

E. Execution

Once the system understands the driver’s maneuver-level
intention, it computes commands needed to share control
with the driver over each actuator. Haptic shared steering
control involves the computation of a force feedback torque
τFFB as

τFFB = KFFB(δ
iFFB
MPC −δ

iFFB
DRV ) (6)

where KFFB is a non-constant stiffness, and the difference
between MPC steering command δMPC and the driver’s
steering wheel angle δDRV is taken at stage iFFB of the chosen
plan. This form of predictive haptic feedback is demonstrated
by Balachandran et al. for obstacle avoidance maneuvers and
enables the system to create a slightly preempted warning of
possible dangers on the horizon [20]. The feedback stiffness
in (6) varies linearly between minimum and maximum
values as a function of the environment cost of the inferred
maneuver

KFFB = Kmin + Jenv
Kmax −Kmin

JenvMax
(7)

As the driver is closer to a collision or to driving off the
road, the system provides a stronger nudge. The minimum
stiffness Kmin is chosen so that the driver feels some haptic
guidance even if the situation is not safety critical.

In comparison, the system uses an uncoupled input-mixing
scheme to share longitudinal control with the driver. As the
driver’s longitudinal command is already captured in the

NMPC problem objective function in (2), the input sent to
throttle and braking actuators is simply the first command
computed for the chosen plan

Fx = F1
xMPC (8)

The cost terms are tuned to give the driver a feeling of direct
control over longitudinal inputs in most circumstances. How-
ever, when the driver approaches a lead vehicle too closely
in the follow maneuver or executes a pass maneuver too
slowly, for example, the system can intervene by providing
extra throttle or braking.

F. Visual Feedback

In combination with haptic steering feedback, visual feed-
back provided by the system is an important signal for
the driver. Through information in the heads up display
(HUD), shown in Fig. 1, the system can communicate its
understanding of the driver’s chosen maneuver and its plan
for how to conduct that maneuver. The plan of the inferred
maneuver computed with NMPC is rendered as a series of
spheres showing predicted vehicle position states. The sphere
colors range from red to yellow to green, conveying that the
driver may need to slow down (red) or speed up (green) based
on the system’s maneuver plan. This speed information is
particularly useful, as the driver does not experience haptic
feedback on the pedals and hence benefits from an additional
visual communication channel.

IV. EXPERIMENTAL RESULTS

Two experiments demonstrate the implementation of our
SDMC system based on a lead-follow interaction concept.
The purpose of the experiments is to show how the driver
can guide the system through maneuver sequences necessary
to navigate overtaking and lane changing scenarios, and
that the system can support the driver at the control level
in all maneuvers. The SDMC system is implemented on
a Hu&ViL test platform, which enables testing on a real
vehicle with virtual traffic participants and prototyping HUD
concepts. More details on the platform can be found in [21].
The experiments take place on a rectangular skid pad at
Thunderhill Raceway Park in Willows, CA, and a video of
the experiments is available here1.

A. Experiment 1: Overtaking

In the first experiment, the driver and system navigate
an overtaking scenario on an oval roadway with different
directions of travel in each lane. There is a lead vehicle
ahead in the ego vehicle’s lane driving at 14 mph, a fairly
slow speed for this roadway. Another vehicle in the opposing
lane drives toward the ego vehicle at 18 mph. The maneuver
set for this scenario is to lane keep, follow, or pass, and the
driver can indicate a preference to switch from following to
passing with the left turn signal, influencing the maneuver
inference cost as in (5). Figs. 3 and 4 show the driver and
system’s control inputs and the maneuver inference costs for
this experiment.

1https://youtu.be/8yZrXGGnGTc

https://youtu.be/8yZrXGGnGTc


Fig. 3. Steering inputs, haptic steering feedback, and longitudinal inputs
during the overtaking experiment. Background colors indicate when the
driver and system execute lane keep (purple), follow (pink), and pass
(orange) maneuvers.

Fig. 4. Inference cost during the overtaking experiment. A green back-
ground indicates when the left turn signal is activated.

As the driver approaches the lead vehicle, it begins a fol-
low maneuver at t = 34 s in which the system decreases the
driver’s longitudinal input to keep a safe following distance.
The driver continues to accelerate and rotates the steering
wheel to the left a couple of times until the system recognizes
their passing intent at t = 41 s. Until the maneuver inference
switches to pass, the system provides some resistance on
the steering wheel – as seen in the haptic feedback overlaid
on Fig. 3 – trying to keep the driver within their original
lane. The driver then slows down to follow the lead vehicle,
again receiving assistance to stay behind the lead vehicle.
The next time the driver attempts to pass, around t = 46 s,
they first preempt the maneuver with the left turn signal.
Fig. 4 shows the impact of the turn signal on the maneuver
inference cost, gradually lowering the cost to switch to the
passing maneuver. The driver can then more easily transition
to a passing maneuver with smaller changes in steering and
throttle input required.

Once committed to the pass, the driver receives support
from the system through shared lateral and longitudinal
control. The opposing vehicle begins to approach in the
left lane around t = 50 s. The system provides strong
steering feedback with increased stiffness first to the right
to avoid this vehicle and then to the left to avoid over-
steering back into their lane. The system additionally slows

the vehicle to create more separation from the opposing
vehicle and then accelerates slightly at t = 52 s to complete
the maneuver ahead of the lead vehicle. Together the driver
and system navigate what could be a dangerous overtaking
scenario without conflicts in decision making intent. The
driver initiates each maneuver transition, and the system
supports them by helping with the coordination of lateral
and longitudinal inputs while overtaking.

B. Experiment 2: Lane Changing

The second experiment takes place on a two-lane oval
roadway with traffic moving in the same direction in both
lanes. The driver again encounters a slower moving vehicle
in the right lane. In this case, the maneuver set includes lane
keeping in the right lane, following the lead vehicle in the
right lane, and lane keeping in the left lane. The driver can
cue transitions to maneuvers in the left lane with the left turn
signal and vice versa to the right. Figs. 5 and 6 show inputs
and inference costs for this lane changing experiment.

Fig. 5. Steering inputs, haptic steering feedback, and longitudinal inputs
during the lane change experiment. Background colors indicate different
maneuvers.

Fig. 6. Inference cost during the lane change experiment. Green background
indicates left turn signal, and yellow background indicates right turn signal.

The ego vehicle begins in the right lane, following the lead
vehicle until making a lane change to the left at t = 123 s.
Since the driver does not use the left turn signal, they have
to steer quite a bit to the left against an increasing feedback
torque from the system. While in the left lane, the driver
comes close to veering off the road around t = 131 s. The



system provides a steering torque to the right with a high
stiffness given the safety criticality and briefly decreases the
brake force magnitude to ensure that the tires don’t exceed
friction limits. The driver next initiates a lane change back
to the right lane just ahead of the lead vehicle using their
right turn signal at t = 136 s. While entering the right lane,
the driver nearly bumps into the lead vehicle around t = 139
s, so the system slows them down to give the driver more
time before a possible collision and applies a sharp feedback
torque to the left, saturating the force feedback motor. Thus,
the system can help the driver safely change lanes despite
traffic that the driver may not correctly perceive, such as a
vehicle in their blind spot.

During the remainder of the experiment, the driver makes
left and right lane changes, cueing the system to lane keep
in their desired lane with the turn signal. Fig. 6 demonstrates
the decrease in inference cost for the maneuver that the driver
preempts through their turn signal. Once the turn signal is
activated, it requires only slight steering motions to the left
or right for the system to understand the change in maneuver.

V. CONCLUSION

We have introduced a SDMC system in which the driver
guides the system through a series of maneuvers, modeled
after the lead-follow relationship in partner dancing. Our
system interprets the driver’s intended maneuver and jointly
executes the maneuver with them through shared control
over steering, throttle, and braking actuators. The operating
principles of the system are demonstrated on a test track in
overtaking and lane change scenarios. In particular, the driver
uses familiar inputs to communicate transitions between lane
keeping, following, and passing maneuvers, and the system
helps the driver avoid collisions and stay on the road.

As this paper presents a preliminary exploration of partner
dancing in the context of driver-ADAS interaction, there are
other elements of the metaphor that warrant further investiga-
tion. These include the synchronization of dancers’ footwork
to the external rhythm of the music and a determination of
qualities that lead to strong compatibility between partners.
Additionally, this work considers lane change maneuvers as
a simple switch from lane keeping in one lane to another.
Looking into new ways ways for initiating and sharing
control during the process of changing lanes, as separate
from a lane keeping maneuver, is an interesting area for
further research. Enabling the driver to guide the system
through series of jointly executed maneuvers opens many
avenues for future ADAS conceptualization and design.
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