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Abstract

There has been an enormous global research effort to alleviate the current and pro-

jected environmental consequences incurred by internal combustion (IC) engines, the

dominant propulsion systems in ground vehicles. Two technologies have the potential

to improve the efficiency and emissions of IC engines in the near future: variable valve

actuation (VVA) and homogeneous charge compression ignition (HCCI).

IC engines equipped with VVA systems are proven to show better performance

by adjusting the valve lift and timing appropriately. An electro-hydraulic valve sys-

tem (EHVS) is a type of VVA system that possesses full flexibility, i.e., the ability

to change the valve lift and timing independently and continuously, making it an

ideal rapid prototyping tool in a research environment. Unfortunately, an EHVS typ-

ically shows a significant response time delay that limits the achievable closed-loop

bandwidth and, as a result, shows poor tracking performance. In this thesis, a control

framework that includes system identification, feedback control design, and repetitive

control design is presented. The combined control law shows excellent performance

with a root-mean-square tracking error below 40 µm over a maximum valve lift of

4 mm. A stability analysis is also provided to show that the mean tracking error

converges to zero asymptotically with the combined control law.

HCCI, the other technology presented in this thesis, is a combustion strategy

initiated by compressing a homogeneous air-fuel mixture to auto-ignition, therefore,

ignition occurs at multiple points inside the cylinder without noticeable flame propa-

gation. The result is rapid combustion with low peak in-cylinder temperature, which

gives HCCI improved efficiency and reduces NOx formation. To initiate HCCI with

a typical compression ratio, the sensible energy of the mixture needs to be high
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compared to a spark ignited (SI) strategy. One approach to achieve this, called re-

compression HCCI, is by closing the exhaust valve early to trap a portion of the

exhaust gas in the cylinder.

Unlike a SI or Diesel strategy, HCCI lacks an explicit combustion trigger, as auto-

ignition is governed by chemical kinetics. Therefore, the thermo-chemical conditions

of the air-fuel mixture need to be carefully controlled for HCCI to occur at the de-

sired timing. Compounding this challenge in recompression HCCI is the re-utilization

of the exhaust gas which creates cycle-to-cycle coupling. Furthermore, the coupling

characteristics can change drastically around different operating points, making com-

bustion timing control difficult across a wide range of conditions. In this thesis, a

graphical analysis examines the in-cylinder temperature dynamics of recompression

HCCI and reveals three qualitative types of temperature dynamics. With this insight,

a switching linear model is formulated by combining three linear models: one for each

of the three types of temperature dynamics. A switching controller that is composed

of three local linear feedback controllers can then be designed based on the switching

model. This switching model/control formulation is tested on an experimental HCCI

testbed and shows good performance in controlling the combustion timing across a

wide range. A semi-definite program is formulated to find a Lyapunov function for

the switching model/control framework and shows that it is stable.

As HCCI is dictated by the in-cylinder thermo-chemical conditions, there are

further concerns about the robustness of HCCI, i.e., the boundedness of the thermo-

chemical conditions with uncertainty existing in the ambient conditions and in the

engine’s own characteristics due to aging. To assess HCCI’s robustness, this thesis

presents a linear parameter varying (LPV) model that captures the dynamics of

recompression HCCI and possesses an elegant model structure that is more amenable

to analysis. Based on this model, a recursive algorithm using convex optimization is

formulated to generate analytical statements about the boundedness of the in-cylinder

thermo-chemical conditions. The bounds generated by the algorithm are also shown

to relate well to the data from the experimental testbed.
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Chapter 1

Introduction

1.1 Background

In 2005, according to its Energy Information Administration [1] the U.S. emitted

5974.3 million metric tons (MMT) of carbon dioxide (CO2) , which ranked first in

the world. Roughly 25% of that total amount (1628.6 MMT) could be attributed to

internal combustion (IC) engines on ground vehicles. The high percentage reflected

the fact that the U.S. averaged 0.83 vehicles per capita, the highest anywhere in the

world [2]. The rest of the developed world showed lower-but-comparable numbers. In

2006, China overtook the U.S. in terms of the total amount of CO2 emitted [3], with

a meager average of 0.024 vehicles per capita. India painted a similar picture with its

total CO2 emissions of 1652.1 MMT in 2009 (fifth in the world, after China, the U.S.,

the European Union and Japan) [3] and 0.012 vehicles per capita. With a combined

population of 2.5 billion that is quickly becoming more affluent, China and India

represent a developing world that, rightfully, aspires to the same personal mobility

enjoyed by the developed countries. This makes the global outlook for capping CO2,

the major source of greenhouse gas, all the grimmer. In addition to CO2 emissions,

IC engines produce oxides of nitrogen (NOx) which are known to cause smog and

acid rain.

To alleviate these current and projected environmental consequences, there has

been an enormous research effort worldwide to find more sustainable ways to power

1



CHAPTER 1. INTRODUCTION 2

ground vehicles. Fuel cells, solar cells, and powertrain electrification are among the in-

novations proposed. However, none of the above is currently able to replace IC engines

due to petroleum fuel’s ease of storage and unparalleled energy density. Improving the

efficiency and emissions of IC engines, therefore, remains the most direct way to have

a far-reaching effect on curbing the environmental strain caused by ground vehicles.

In the near future, two technologies have the potential to make IC engines cleaner and

more efficient: Variable Valve Actuation (VVA) and Homogeneous Charge Compres-

sion Ignition (HCCI). The merits and challenges associated with these technologies

are discussed in Sections 1.2 and 1.3.

1.2 Variable Valve Actuation

Internal combustion engines equipped with VVA systems are proven to achieve better

combustion characteristics. Novel valve strategies that appropriately vary the valve

lift and/or timing can increase fuel economy [4, 5], reduce emissions [6] and boost

power output [7, 8]. Furthermore, a VVA system can serve as a useful control knob

for homogeneous charge compression ignition [9], the other efficiency and pollution

improving technology discussed in this thesis.

There are a number of VVA systems on production engines capable of adjusting

the aforementioned valve profile parameters but, in general, the adjustments are

restricted due to packaging or cost constraints. For example, a cam phaser can adjust

the relative rotational position between the cam shaft and crank shaft but cannot

change the valve profile (fixed lift and opening duration). Furthermore, the range

and slew rate of the phasing adjustment are limited. The Honda VTEC (variable

valve timing and lift technology) system is another production VVA system [8]. This

system has two sets of cam lobes on the cam shaft with different lift and timing

configurations. Depending on the engine speed, one of the two cam lobes is engaged

at a time, providing different engine breathing characteristics. The adjustment of

lift and timing with the VTEC system, therefore, has only two steps and are not

independent to each other.
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The desire to have full flexibility in valve motion is even greater in a research en-

vironment where innovative valve strategies are developed and validated. An electro-

hydraulic valve system (EHVS) is a system that can independently and continuously

change the valve lift and timing on a cycle-by-cycle basis, making it ideal in a re-

search laboratory. A schematic of a typical EHVS is shown in Fig. 1.1. There is a

pump generating the high pressure supply in this hydraulic system. The first stage

of the system is a spool valve driven by a voice coil. The position of the spool valve

position determines the cross-sectional area of the hydraulic fluid paths and generates

a pressure difference across the actuator piston. The pressure difference ultimately

creates a force that moves the valve actuator which is connected to an engine valve.

Therefore, the valve position can be completely decoupled from the crank position on

an IC engine by using an EHVS instead of a mechanical cam.

Obviously, the full flexibility afforded by the EHVS comes with the price of greater

system complexity and bulkiness, making it unsuitable for production engines. How-

ever, an EHVS can serve as a rapid prototyping tool in a research environment to

explore new valve strategies that can be later emulated by more compact VVA sys-

tems suitable for production vehicles.

1.2.1 Challenges with EHVS

The concept of using an EHVS as a rapid prototyping tool in a research laboratory is

appealing. However, the valve position control of such an apparatus must be accurate

and consistent over the operating range of interest. Error and inconsistency in valve

position add more variabilities when researchers try to make sense of the subsequent

combustion results. Unfortunately, the flexibility provided by an EHVS is coupled

with difficulties in valve position control. This is largely due to the response time

delay that results from compressibility of the hydraulic fluid and nonlinearity of the

system. In particular, the time delay decreases the phase margin of the system and

limits the achievable closed-loop bandwidth of the system. Effectively, this translates

to poor tracking performance that is inadequate for a research environment.
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Figure 1.1: Schematics of an EHVS

1.2.2 Related Work on EHVS

A number of researchers contributed to understanding the dynamics of an EHVS.

Some of the earliest modeling work was performed by Richman [10]. He constructed

a five state nonlinear model based on fluid mechanics and rigid body dynamics. The

model consisted of two mass-spring-damper modes for the valve actuator and spool

valve, and a first order fluid dynamics mode. Hathout et al. later showed that

the spool valve dynamics are at least an order of magnitude faster than the rest of

the system modes and can be neglected. As a result, they showed that a linearized

third-order model is sufficient for feedback control design [11]. Various researchers
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have developed controllers for EHVS [10, 12, 11]. Anderson et al. demonstrated an

adaptive controller for EHVS [13] that controls the maximum valve lift. Since airflow

dynamics do not correlate to maximum valve lift exclusively, there are uncertainties

regarding how much air is inducted or exhausted if only the maximum valve lift

is controlled. Sun et al. [14] showed that repetitive control [15] is very effective for

the EHVS profile tracking problem, since valve motion is largely repetitive for steady-

state engine operations. However, this approach assumes a fundamental period of the

desired valve profile and, as a result, limits the EHVS to operate at several specific

engine speeds. A significant portion of this thesis focuses on developing a control

framework that yields tracking performance superior to these previous results.

1.3 Homogeneous Charge Compression Ignition

HCCI is a new combustion strategy (relative to a spark ignited or Diesel strategy)

where a well-mixed air and fuel charge is compressed to its autoignition point. As

a result, HCCI combustion takes place almost simultaneously across the cylinder

without noticeable flame propagation [16] and better approximates the instantaneous

energy conversion of an ideal Otto cycle. Compared to a spark ignited (SI) strategy,

HCCI promises up to 30% increase in efficiency at low load [17]. The homogeneous

mixture also eliminates the existence of fuel-rich spots, the main cause of particulate

matter in a Diesel strategy. Lastly, HCCI has lower peak combustion temperature

which significantly reduces NOx emissions [18, 19].

To achieve HCCI with typical compression ratios, the sensible energy of the mix-

ture needs to be higher than for a SI strategy. Heating the intake air [20] is one way

to achieve the higher sensible energy required. The other method, often considered

as the more practical one, is by re-utilizing the exhaust gas from the previous engine

cycles, made possible by a variable valve actuation system [21, 22, 23, 9, 24, 25]. This

method is called residual-affected HCCI. Two valve strategies have been proposed to

re-introduce or retain exhaust in the cylinder. In rebreathing HCCI, the exhaust valve

is opened a second time along with the intake valve as the piston moves towards bot-

tom dead center (BDC) during the intake stroke. Therefore, exhaust is re-inducted
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Figure 1.2: Typical recompression HCCI pressure trace and valve profiles

into the cylinder from the exhaust manifold and mixes with the air-fuel charge. The

focus of this thesis, however, is HCCI by means of exhaust recompression.

A typical pressure trace and valve events for recompression HCCI are shown in

Fig. 1.2. The engine position shown in the figure is referenced from gas exchange

TDC and this is the convention adopted throughout this thesis. As can be seen in

the top plot, a combustion event occurs around 360 CAD and the pressure trace

shows an abrupt increase due to the near instantaneous energy conversion of HCCI.

Work output is being extracted during the subsequent expansion stroke followed by

an exhaust event shown in red in the bottom plot. The exhaust valve closure (EVC)

timing is significantly earlier than that in a SI strategy to trap a significant portion

of the exhaust gas in the cylinder. The retained exhaust is then recompressed, and,

as a result, the pressure trace around gas-exchange TDC shows a tell-tale “hump”.

Fuel is injected into the cylinder during recompression, followed by the intake valve

event shown in blue in the bottom plot of Fig. 1.2. Therefore, the fuel has sufficient
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time to mix with the inducted air and trapped exhaust before the next combustion

event. After intake valve closure (IVC), the homogenous mixture is then compressed

to reach its autoignition point and the next HCCI event is initiated.

1.3.1 Challenges with Recompression HCCI

There are a number of obstacles to overcome before recompression HCCI can be

reliably employed on production engines. They are listed as follows:

Lack of direct ignition trigger

Unlike conventional engines where combustion is initiated by direct triggers, i.e. a

spark event in a SI engine or an injection event in a Diesel engine, HCCI relies on

compressing a homogenous air-fuel mixture to its autoignition point. Therefore, only

indirect inputs such as valve timings, fuel injection quantities, etc., can influence

the thermo-chemical conditions of the mixture that, in turn, determine whether an

HCCI event will occur or not upon compression. This obstacle becomes even more

difficult when ignition is required to occur at a specific timing, which translates to

controlling the thermo-chemical conditions to a high degree of accuracy using the

available indirect inputs.

Cycle-to-cycle coupling

By trapping the exhaust gas and using it to initiate HCCI on the next cycle, re-

compression HCCI possesses cycle-to-cycle coupling. Therefore, the thermo-chemical

conditions of the current engine cycle are not only functions of inputs, but also func-

tions of the thermo-chemical conditions of the previous engine cycles. Essentially,

recompression HCCI is a dynamical system instead of a static input-output mapping.

Significant change in system dynamics

The cycle-to-cycle dynamics of recompression HCCI can change significantly around

different operating points. For example, the change in system dynamics can manifest

itself as a three-fold increase in the standard deviation of ignition timing around an
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ill-behaved operating point when compared to a “good” point, making the former

unusable in practice. For HCCI to be practical for road use, it is desirable to have

an operating range as wide as possible. This translates to the challenge of designing

a controller that is effective across a wide range and is able to make ill-behaved

open-loop operating points usable in closed loop.

Stability and robustness of HCCI

Stability of HCCI, loosely defined here as the boundedness of the in-cylinder thermo-

chemical conditions, is an important topic of interest. Since HCCI is sensitive to these

in-cylinder conditions, their divergence can lead to undesirable combustion charac-

teristics or even misfires. Furthermore, a production engine and its surroundings

change constantly due to aging hardware, and the different environments it operates

in. Therefore, robustness of HCCI, that is, the boundedness of the in-cylinder condi-

tions with uncertainties in the true system characteristics, is of even greater practical

interest.

Currently, the majority of HCCI research in the literature focuses on overcoming the

first two obstacles and the author summarizes some of it in the following section.

This thesis aims to understand and overcome the latter two obstacles listed above,

i.e., the change in HCCI dynamics and the stability and robustness of HCCI.

1.3.2 Related Work on HCCI

HCCI was first reported on two-stroke engines by Onishi et al. [26] and Noguchi [27]

in 1979, and there has been much research effort in the past three decades aiming

at employing HCCI on production engines. Early work demonstrated that HCCI

can be achieved on research engines. Najt and Foster were the first to demonstrate

that HCCI can be achieved on a four-stroke engine with blended isooctane and n-

heptane [28]. Thring successfully achieved HCCI with gasoline and Diesel fuel [29]

and mapped out the operating range of HCCI in terms of air-fuel ratio and exhaust

gas recirculation rate at two engine speeds. Due to the lack of an explicit ignition
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trigger, it was not until the mid-90s that more research reports on HCCI appeared in

the literature when prototype VVA systems became available as an effective actuator

for residual-affected HCCI. Since then, a lot of research effort has gone into modeling

of HCCI to lend insight into the process and controlling the ignition timing and load

of HCCI, as summarized in the following sections.

Modeling of HCCI

Models for HCCI are obtained from two techniques: system identification or phys-

ical modeling. In general, the former has the advantage of being faster to develop.

Pfeiffer et al. used this approach in [30] and employed system identification at fifteen

operating points on an experimental HCCI engine. The resulting fifteen, second-order

models were then merged as a single model which showed good correlations to the en-

gine data at the tested operating points. Another example is presented by Bengtsson

et al. in [31] where a second-order model was obtained using system identification

on a six-cylinder engine. The resulting linear model showed good performance in

predicting combustion timing in the validation experiments.

On the other hand, physics-based models have the merits of being more portable

across engines as they are governed by the same set of physical laws. Physics-based

HCCI models generally fall into two groups: control-oriented, single-zone models

and higher-dimension models. The latter group consists of more complicated models

that include some level of spatial distribution of the thermal and chemical conditions

within the cylinder, and describe how this distribution varies in time. The model

complexity, however, can vary greatly among models within this group. On the

simpler end of the spectrum, the models typically divide the cylinder spatially into

several zones. The thermo-chemical conditions of each zone can either evolve in

isolation or interact with adjacent zones based on some assumptions. For example,

Aceves et al. used a CFD model and a ten-zone chemical kinetics model to predict

peak pressure, burn duration and hydrocarbon emissions of HCCI [32]. Fiveland et al.

[33] used a two-zone combustion model that includes an adiabatic core and a thermal

boundary layer to capture the heat transfer characteristics during HCCI combustions.

On the other extreme, CFD models and detailed chemical kinetics model were used to
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describe HCCI with a very fine spatial resolution [34, 35, 36]. These models are highly

computationally intensive. For example, a run time of twelve hours was reported [35]

in 2002 for a sixty degree crank-angle simulation.

The second group of physics-based models, the control-oriented single-zone mod-

els, disregard any spatial distribution. These models assume homogeneity across the

cylinder and aim to capture, based on simplifying assumptions, how the thermo-

chemical conditions evolve in time when influenced by various inputs, and how these

conditions can be further related to the typical control objectives, i.e. ignition timing,

work output, etc. Shaver et al. outlined one such model in [37] that captured the

dynamics of peak pressure and angle of peak pressure with the IVC timing and re-

inducted exhaust ratio as the model inputs. Using slightly different thermodynamic

assumptions, Ravi et al. developed a model for recompression HCCI [38]. The system

states in this model are the oxygen content and temperature of the in-cylinder gas

which were more representative of the actual thermo-chemical conditions inside the

cylinder. Chiang and Stenfanopoulou presented a model that captured the effect of

rebreathing lift on the dynamics of the in-cylinder temperature at IVC [39]. Widd et

al. combined the cycle-to-cycle temperature dynamics of HCCI with the slow-varying

cylinder wall temperature dynamics to form a two-state model [40]. Kang et al. [41]

captured the dynamics of the in-cylinder temperature at IVC which can be related to

the average energy conversion rate during combustion. The models described above

used simplified thermodynamics and fluid dynamics assumptions with the ultimate

goal of providing more tractable platforms for model-based control synthesis.

Control of HCCI

Since the work output of HCCI is largely dependent on the total amount fuel in-

jected into the cylinder as long as ignition occurs at an “appropriate” engine position,

combustion timing control is arguably the most fundamental challenge in HCCI. A

number of control actuators that can influence HCCI ignition timing have been ex-

plored, including intake air temperature [20, 42], variable compression ratio [43],

variable valve timing [9, 24, 25], effective octane number with different blends of

fuel [28, 44], and the timing of pilot injections during recompression [45, 46]. Using
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these inputs, empirically tuned controllers or model-based controllers can be used to

control the combustion timing of HCCI. Empirically tuned controllers are generally

of proportional-integral-derivative (PID) type which is straightforward conceptually

and widely used in the industry. Olsson et al. [47] demonstrated tracking of igni-

tion phasing and load profile with three PID controllers modulating the intake air

temperature, effective octane-number of fuel and total amount of fuel. Agrell et al.

[9] demonstrated a PI controller to control ignition timing by varying negative valve

verlap or intake valve closure timing.

The second group of controllers, the model-based controllers, are either based

on models obtained from system identification or on the control-oriented models de-

scribed in the previous section. Bengtsson et al. used a model predictive controller

(MPC) to control ignition phasing and work output based on the identified model

[44] is an example of the former method. On the other hand, control synthesis based

on control-oriented models are slightly more complicated, since these models are gen-

erally nonlinear. One commonly used approach is to first linearize the model about

an operating point. Control techniques for linear systems [48, 49], which are well-

studied, can then be used with the resulting linearized systems. For example, Shaver

et al. designed an H2 controller based on the linearized, control-oriented model [25].

Control of peak pressure was achieved by varying the rebreathing exhaust valve tim-

ing with the H2 controller. Widd et al. used a MPC based on the linearized model to

control ignition phasing of HCCI [42] with variable valve actuation and intake tem-

perature management. Ravi et al. used a pole-placement controller to control ignition

phasing on a multi-cylinder HCCI engine [50]. These controllers had the advantages

of being tractable to develop and showed good performance around the linearized

points. However, since the cycle-to-cycle dynamics of recompression HCCI can vary

dramatically across the operating range, this approach can hurt HCCI combustion

when the operating conditions deviate from the linearized point. This thesis analyzes

how recompression HCCI dynamics change in a wide operating range and reveals the

range of applicability of a linearized model. Thanks to the insights from this analysis,

a methodology for control design that is only marginally more complicated than the

ones described above is shown to work well on an experimental testbed across a wide
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range of operating conditions.

Stability and Robustness Statements

As discussed previously, stability and robustness of HCCI are areas where researchers

want to have a better understanding with the various models. One type of stability

statement is readily available by examining the eigenvalues of the identified models

or linearized control-oriented models. The system eigenvalues shown in [44, 25, 50]

all lay inside the unit circle on the complex plane, showing that HCCI, as a discrete-

time system, was stable around the identification or linearized points. Chiang et al.

[51] used a graphical approach and concluded the existence of a stable equilibrium

by examining the gradients of the two temperature propagation curves that made

up a returning map. The above stability results are, however, restrictive without a

region of attraction to complement them. The ability to make statements about the

state trajectories from a wide set of initial conditions is more desirable, since they

include the system behavior beyond the vicinity of an equilibrium. Unfortunately,

relevant reports are relatively scarce in the literature. Shaver [52] and Chiang et al.

[53] both presented stability results based on their respective control-oriented models

for rebreathing HCCI. In [52], Shaver presented a semi-definite program (SDP) for

finding a Lyapunov function and was able to conclude asymptotic stability of peak

pressure and angle of peak pressure. Chiang et al. formulated a nonlinear controller

that cancels much of the nonlinearity present in their rebreathing HCCI model. As a

result, asymptotic stability of the in-cylinder gas temperature could be derived with

the nonlinear controller closing the loop. To the best of the author’s knowledge,

there were no robustness statements of HCCI, i.e., the boundedness of the in-cylinder

conditions with model uncertainties, yet published.

To advance the understanding of the stability and robustness properties of HCCI,

this thesis presents a model that captures the essential behavior of recompression

HCCI with a linear-like structure. As a result, the proposed model is more amenable

to stability and robustness analysis compared to other existing HCCI models. Using

this new model, a recursive algorithm is presented to make statements about the

stability and robustness characteristics of recompression HCCI.
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1.4 Thesis Contribution

This thesis aims to fulfill three high-level research objectives. The specific contribu-

tions in each of the three areas are outlined below.

1. To achieve precise tracking performance with an EHVS

• Developed a framework that includes system identification, a linear quadratic

tracking control design and a repetitive control design that does not de-

pend on a fundamental period in the desired valve profile. The combined

control law showed a root-mean-square tracking error under 40 µm over a

maximum valve lift of 4 mm.

• Derived a stability criterion for the presented control framework.

• Derived an analytical expression for the variance of the steady-state mean

tracking error in the presence of measurement noise.

2. To develop an effective framework for controlling combustion timing of recom-

pression HCCI across a wide range of operating conditions

• Showed that there exist three qualitative types of temperature dynamics

across a wide operating range.

• Constructed a three-region switching linear model to capture the change

in system dynamics for control purposes.

• Developed a three-region controller that could track a wide range of de-

sired combustion timing command and reduce the variability of combustion

phasing over open loop operations.

• Derived stability guarantees for the switching model/control formulation.

3. To establish stability and robustness statements about recompression HCCI

• Developed a linear parameter varying (LPV) model that captures the es-

sential cycle-to-cycle dynamics of recompression HCCI and is amenable to

analysis.
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• Formulated a recursive algorithm based on the LPV model that could

establish stability statements for recompression HCCI.

• Generalized the stability algorithm to include modeling uncertainties. Ro-

bustness statements that are representative of the testbed behavior can

then be made with this generalization.

1.5 Thesis Outline

This thesis consists of eight chapters, outlined as follows.

Chapter 2 describes a control framework for an EHVS. The chapter first explains the

system identification method used to generate a mathematical model for the EHVS.

Two feedback controller designs are formulated based on this model, and their track-

ing performance is evaluated on the EHVS. Furthermore, the results with the feedback

controllers highlight the difficulty in achieving good tracking performance with the

response delay present in the EHVS. To further improve the performance, a repetitive

controller is formulated to augment the feedback controller, and the combined con-

trol law is shown to achieve excellent tracking results. The last part of this chapter

includes a stability proof for the control framework presented and shows that the

mean tracking error asymptotically converges to zero with the repetitive controller.

An analysis of the variance of the mean tracking error is also presented to discuss the

effect of sensor noise on the proposed control scheme.

Chapter 3 gives a brief summary of the control-oriented, single-zone model devel-

oped by Ravi [38], since it serves as the launching point of this thesis.

Chapter 4 uses a graphical analysis of the nonlinear model summarized in Chapter

3. This analysis reveals that there exist three types of temperature dynamics that can

be related to the qualitative change in system behavior observed on an experimental

HCCI engine. Based on the analysis, a three-region switching linear model composed

of three local linearized models is constructed.

Chapter 5 presents a three-region switching controller based on the switching lin-

ear model described in Chapter 4. This controller can track a wide range of desired

combustion phasing on the experimental HCCI testbed. Furthermore, this controller
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is shown to reduce the variability of combustion phasing compared to open loop

operations. This chapter further includes a semi-definite program (SDP) to find a

Lyapunov function for the switching control/model formulation presented in Chapter

4 and 5. The obtained Lyapunov function guarantees that the switching controller

is exponentially stable with the switching linear model about a single equilibrium.

The SDP is further modified to discuss stability with respect to a set of equilibria

simultaneously.

Chapter 6 derives a linear parameter varying (LPV) model that is formulated with

the explicit goal of tractable stability and robustness analysis of HCCI. This model,

which is based on the nonlinear model developed by Ravi et al. [38], uses two varying

parameters to summarize the major system nonlinearities and uses a set of linear

equations to describe the remaining system behavior. With this, the LPV model has

a significant reduction in model complexity compared to the nonlinear model. This

chapter further examines the LPV model in various numerical examples. The results

show that this simplified model resembles the nonlinear model in all test cases.

Chapter 7 builds on the LPV model presented in Chapter 6 and formulates a re-

cursive stability algorithm that can analytically establish the convergence of the two

system states: in-cylinder oxygen content and temperature. The algorithm utilizes

the convexity of the LPV model equations and can be very efficiently solved by convex

optimization software. In the second part of this chapter, the stability algorithm is

further generalized to accommodate modeling uncertainties. As a result, analytical

robustness statements can be made, which have not been reported previously in the

literature. The established robustness statements are also shown to relate well to the

data taken from the experimental testbed.

Chapter 8 briefly summarizes this thesis and points out some possible future re-

search directions related to the presented work.



Chapter 2

Control of an Electro-Hydraulic

Engine Valve System

An electro-hydraulic valve system (EHVS) can independently and continuously adjust

the valve timing and lift of an IC engine on a cycle-by-cycle basis, making it an ideal

rapid prototyping tool in a research environment. However, with an EHVS, it is

difficult to achieve the same level of accurate position control that a mechanical

cam provides. In particular, the response time delay and nonlinear dynamics of the

hydraulic system can lead to error in valve position control. This chapter presents a

control framework that achieves good tracking performance with an EHVS. Section

2.1 first describes the system identification method used to generate a mathematical

model for the EHVS. Section 2.2 compares two feedback control designs based on the

identified model in Section 2.1, and highlights the inadequacy of using only feedback

control due to the significant response delay present in the EHVS. The remainder

of this chapter introduces a repetitive controller that generates a feed-forward input

profile on a cycle-by-cycle basis and further improves the root-mean-square tracking

performance of the EHVS to under 40 µm.

16
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Figure 2.1: Valve and actuator illustration

2.1 System Identification

A schematic of the EHVS used in this thesis is shown in Fig. 1.1. The hydraulic pump

supplies the EHVS with a fixed pressure of 20.7 MPa (3000 psi). The input of a single

valve actuator takes an analog voltage to drive the voice coil which in turn drives

the spool valve shown in Fig. 1.1. The spool valve position determines the cross-

sectional area of the hydraulic fluid paths and generates a pressure difference across

the hydraulic piston. The pressure difference ultimately creates a force that moves

the valve actuator. A linear variable differential transformer (LVDT) is attached

to the valve actuator to measure its position. The EHVS consists of eight such

actuators and drives a total of sixteen intake and exhaust valves on a 2.2 liter four-

cylinder GM Ecotech engine. The two intake (or exhaust) valves of each cylinder

are paired together and driven by a single actuator. The Matlab xPC platform is

used to generate voltage inputs to the voice coil amplifiers and to sense the position

measurements from the LVDTs at 5 kHz. The particular sampling frequency is chosen
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to exceed the desired closed loop bandwidth and to satisfy the limited computational

capabilities of the hardware.

As discussed in Chapter 1, the dynamics of the EHVS can be represented by a

five-state nonlinear model shown by Richman [10]. Hathout et al. [11] further show

that two of the states associated with the spool valve are an order of magnitude faster

than the engine valve mode and can be safely neglected for control design. This model

structure is adopted in this thesis and the frequency response of the EHVS shown

later indeed resembles a third-order linear system with input delay.

To use frequency identification techniques, the identification input must be suf-

ficiently rich in frequency content to excite the system dynamics. The input should

also be sufficiently large in magnitude to create a reasonable signal-to-noise ratio.

Furthermore, the valve actuators are not rigidly linked to the engine valves as shown

in Fig. 2.1. Therefore, the identification input needs to carefully chosen so that the

valve contacts the actuator at all times. Detachment of the two elements might cor-

rupt the identification results and, more importantly, could damage the valve-actuator

contact surface due to large impact forces. To ensure continuous contact, the two ele-

ments must experience the same acceleration, and the reaction force between the two

elements must be positive. The first condition gives the following equation:

ẍ1 =
F +R

m1

=
−d2ẋ2 − k2(x2 − x20)−R

m2

= ẍ2 (2.1)

where

m1 is the actuator mass

m2 is the valve mass

k2 is the valve spring constant

d2 is the valve damping coefficient

x1 is the actuator position

x2 is the valve position
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x20 is the valve spring relaxed position

F is the actuator force

R is the reaction force between the two elements

Solving for R and restricting it to be positive, we have the following condition:

m1k2(x20 − x2)−m1d2ẋ2 −m2F

m1 +m2

> 0 (2.2)

While the valve damping coefficient is difficult to measure, the valve spring force is

very large compared to the force generated by the damping term. The valve spring

is also heavily preloaded from its relaxed position of x20. The actuator force can be

bounded conservatively to be negative which translates to bounding the input voltage

to be negative, since negative input voltage represents negative force in a steady-state

sense. With this bound applied to the system identification input, the actuators and

valves remain in contact during experiments. A pseudo random binary sequence

(PRBS) is used to excite the EHVS, since a PRBS has rich frequency contents and

its amplitude can be easily controlled to satisfy Equation (2.2). In addition, a dither

at 800 Hz is added to overcome the static friction present in the spool valve.

The empirical transfer function estimate (ETFE) obtained using this setup is

shown in Fig. 2.2. One important characteristic of the system is the presence of a 1

ms response delay. This delay likely arises from the compressibility of the hydraulic

fluid and the friction between the hydraulic piston and cylinder. In general, the

system behaves much like a third-order system with input delay. Therefore, we fit

an eighth-order discrete model with the sampling rate of 5 kHz to the ETFE. Five of

the eight states in this discrete model are used to represent the 1 ms response delay.

The Bode plot of this discrete model is shown in the red dotted line in Fig. 2.2. The

effect of the delay can be best seen from the phase plot: the green dashed line in the

phase plot of Fig. 2.2 is a model that has the same dynamics except for the response

delay, highlighting the phase loss that the delay introduces. In general, the model fits

the ETFE well using this model structure. A discrete time model of one of the valve
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Figure 2.2: ETFE and model fit

actuators is given in the following transfer function:

G(z) =
0.003653z2 + 0.007306z + 0.003653

z8 − 2.775z7 + 2.722z6 − 0.9462z5
(2.3)

Some nonlinearity of the system is observed when varying the amplitude of the

PRBS. As shown in Fig. 2.3, the ETFE generated by a 1.3 Volt PRBS has a higher

resonance peak than that of the ETFE generated by a 0.9 Volts. This is consistent

with the nonlinear relationship between the flowrate and the aperture size determined

by the spool valve position and the presence of Coulomb friction. Since overshoot of

the valve is highly undesirable as it might collide with the piston, the ETFE that has

the highest resonance peak is chosen for fitting a model.
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Figure 2.3: Nonlinearity in the EHVS

2.2 Feedback Controller

With a model to approximate the dynamics of the system, a model-based controller

can be designed for the EHVS. To implement full-state feedback, a Kalman filter is

constructed to give state estimation. The controllability and observability Gramians

of the system are ill-conditioned. This is related to the fact that there is a response

delay in the system and hints at a difficult control problem. Further understanding

of the control challenges can be obtained by examining two simple linear feedback

controllers.
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Figure 2.4: Tracking performance of the pole placement controller

2.2.1 Pole Placement Controller

The first controller designed is a pole placement controller in which the dominant

second-order poles are placed with a damping ratio of 0.8. The closed-loop system

is designed to be well damped because overshoot might cause the valve to collide

with the engine piston and result in damage. Tracking performance is tested at an

engine speed of 1800 RPM with this controller. The desired profile to be tracked

has a maximum lift of 5 mm as shown in green in Fig. 2.4. The rising and falling

edges of the profile are 70 crank angle degree (CAD) and translate to a rise time

of 5.2 ms at 1800 RPM. The 1 ms delay is roughly twenty percent of the rise time

which is not insignificant. The dwelling length at maximum lift is 60 CAD. The entire

valve opening and closing event lasts 200 CAD. Note that the desired valve actuator

position is set at 0.3 mm above the valve seat when the valve is closed. With this

valve lash, the actuator lifts off the valve seat and ensures proper valve closure.

The test result is shown in Fig. 2.4. The response trajectory lags the desired

trajectory and shows an overshoot of approximately fifteen percent. Advancing the

desired profile in time can certainly solve the lagging problem, but the overshoot
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characteristic is still not satisfactory even with a designed damping ratio of 0.8. The

1 ms response delay adversely impacts the phase margin of the system and, inevitably,

modeling error from approximating nonlinear dynamics with a linear model gives rise

to poor performance.

2.2.2 Receding Horizon Linear Quadratic Tracking Controller

The desired valve trajectory is determined at the beginning of an engine cycle by the

engine control unit (ECU). The fact that the desired valve profile to be tracked is

known ahead of the valve event gives extra information. The future desired trajectory

also has the desired velocity and acceleration information implicit in it. Thus, one

should be able to control the EHVS better if the controller is given the information

of where the valve should be in the future. To that end, a quadratic cost function

(2.4) based on tracking error and input is formulated with a finite horizon, N :

Jt =

{
τ=N+t−1∑

τ=t

[ydes(τ)− y(τ)]T ·Q · [ydes(τ)− y(τ)] + u(τ)T ·R · u(τ)

}

+ [ydes(N + t)− y(N + t)]TQ[ydes(N + t)− y(N + t)] (2.4)

where

Q is a positive scalar that weighs tracking error

R is a positive scalar that weighs control effort

N is a positive constant that defines the time horizon

For a given time step t = τ1, the cost function, Jτ1 , is minimized. The optimal

input trajectory, uopt(τ1), ..., uopt(τ1 + N − 1), can be solved recursively by using dy-

namic programming. The first element of this optimal input trajectory is applied to

the system at t = τ1, i.e. uopt(τ1). At the next time step, the cost function, Jτ1+1, is

minimized and uopt(τ1+1) is applied to the system. Essentially, this is a receding hori-

zon controller. The control law can be expressed as a combination of pre-calculated
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Figure 2.5: Tracking performance of the linear quadratic tracking controller

feedback and feed-forward gains as shown in Equation (2.5).

u(t) = Nr · Ydes(t)−K · x(t) (2.5)

where

Ydes(t) = [ydes(t+ 1) ydes(t+ 2) ... ydes(t+N)]T is the future desired trajectory

u is the scalar optimal input

x is the system state

Nr is the feed-forward gain

K is the feedback gain

A derivation of this controller can be found in [54]. As show in Equation (2.5), for

each time step, the future desired trajectory and the current states are updated and

multiplied by the static gains, Nr and K, to determine the input for the system. The

variables, N , Q and R, are the tuning parameters in this LQT controller formulation.
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A time horizon of N = 30 works well with the EHVS. The ratio of Q and R is

empirically determined through experiments until a satisfactory response is obtained.

A typical response with this controller is shown in Fig. 2.5 with the same desired

profile defined previously in Fig. 2.4. The response of this controller is aligned with

the desired trajectory in time, since the controller knows where the valve position

should be in the future and is able to act proactively by taking the response delay

into account. The overshoot is improved compared to the pole placement controller.

However, there is still some ringing in the response.

The linear quadratic tracking controller performs better than the pole placement

controller as a result of knowing the future desired trajectory. The predictive nature

of the controller enables it to track the desired profile more closely. However, for

both controllers, the 1 ms delay in the loop makes it very difficult to damp out the

resonance mode using feedback. To put the control problem into perspective, at

the resonance frequency of 350 Hz of the system, the 1 ms delay costs 126 degrees

of phase. Therefore, phase margin is seriously hurt by this response delay. As a

rapid prototyping tool in a research laboratory, it is desirable to further eliminate

this tracking error so that the subsequent combustion research is not affected by the

inconsistent valve performance.

2.3 Repetitive Controller

As shown in the previous section, using only the feedback controller is not sufficient to

achieve the accurate position control offered by a mechanical cam. To further improve

the tracking performance, the repeatability of the tracking error with the feedback

controller is exploited. In Fig. 2.6, tracking errors from ten engine cycles are plotted.

It can be seen that the tracking errors are almost identical from one cycle to the

next. Based on this observation, this section presents a repetitive controller that

can iteratively generates an auxiliary input to compensate for the highly repeatable

tracking error using feed-forward. The concept of this repetitive controller is very

similar to the iterative learning controllers proposed by Uchiyama [55], Arimoto et

al. [56] and Casalino et al. [57]. These iterative learning controllers can improve the
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Figure 2.6: Tracking error from 10 engine cycles (over-plotted)

tracking performance of robotic manipulators by perfecting their feed-forward input

through repeated trials.

The algorithm of this repetitive controller is described as follows. First, the track-

ing error profile is evenly partitioned into several pieces, as shown in the top plot of

Fig. 2.7. Each of these partitions is referred as a repetitive state, and each of them

has the same width in crank angle. For example, if the state width is 10 CAD, a

valve opening and closing event that lasts 140 CAD consists of 14 repetitive states.

Therefore, the repetitive controller is crank angle based at heart. However, the num-

ber of time samples in each repetitive state varies depending on the sampling rate

and engine speed. The following equations, that express the repetitive control law,

reflect this characteristic.

There are no repetitive states defined in the period where the actuator is detached

from the valve, i.e., where the actuator lifts to the 0.3 mm valve lash. This is because

the tracking performance during this period of operation is not important as long

as the actuator stays above the valve seat. With the repetitive states defined, two

properties are associated with each repetitive state: the mean tracking error and the

repetitive control input. The mean tracking error of each state is computed as shown
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Figure 2.7: Repetitive states and mean error

in the bottom plot of Fig. 2.7. This calculation of the mean tracking error can be

represented by a linear function:

E(k) = P · (ydes − y(k)) (2.6)

where

P ∈ Rm×n

E ∈ Rm is the mean error of each state

ydes ∈ Rn is the desired valve trajectory for a given cycle

y ∈ Rn is the actual valve trajectory for a given cycle

k represents the kth engine cycle

m is the number of repetitive states

n is the number of samples that the repetitive controller covers
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For example, when there are three samples within one repetitive state then the

mean tracking error is simply the average of the tracking error of the three samples.

In this particular case, P has the form:

P =




1
3

1
3

1
3

0 0 0 . . . 0 0 0

0 0 0 1
3

1
3

1
3

. . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 0 . . . 1
3

1
3

1
3




Note that (2.6) indicates how the tracking error in the time domain relates to the

mean tracking error of each repetitive state, which is defined on a crank-angle basis.

The number of columns in P , therefore, depends on the engine speed and the sampling

time chosen for a particular system.

After computing the mean tracking error, the goal is to find an input that drives

the mean error of each state to zero. To determine the repetitive control input for each

state, the control input is updated once per engine cycle according to the following

equation:

U (k)
rep = U (k−1)

rep + kI ·M · E(k−1) (2.7)

where

M ∈ Rm×m

kI is the integral gain

Urep ∈ Rm is the repetitive control input for each state for a given engine cycle

Note that in (2.7), Urep is a vector with each of the elements representing the

repetitive input to the corresponding state, and the vector is updated with respect

to engine cycles. Thus Urep has the same length as the number of repetitive states.

The repetitive control law is specified by the M matrix as it relates the repetitive

control input to the mean tracking error. In its simplest form, the M matrix can be

an identity matrix and represents an integral controller which adjusts the repetitive

input to each state according to the mean tracking error of that state. A slightly
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more evolved example of the M matrix is shown below:

M =




1
2

1
2

0 0 0 0 . . . 0 0
1
3

1
3

1
3

0 0 0 . . . 0 0

0 1
3

1
3

1
3

0 0 . . . 0 0

0 0 1
3

1
3

1
3

0 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 . . . 1
2

1
2




In this specific example, the structure of the M matrix implies that the repetitive

control input for each state is a function of the error from the current state and

the adjacent states. This dependency on adjacent states helps the stability of the

repetitive controller.

So far this section explains how the mean tracking error and repetitive control

input associated with each state are updated. In order to apply the obtained repetitive

control input to the system, the vector Urep needs to be converted into a vector in

Rn, the domain of the system input. This can be achieved by simply using the same

repetitive control input for all samples in the same state. As an example, the case

with three samples per state is presented again:

u(k)rep = S · U (k)
rep (2.8)

where

ST =




1 1 1 0 0 0 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0
...

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 0 . . . 1 1 1




S ∈ Rn×m

urep ∈ Rn is the repetitive control trajectory for a given engine cycle

The vector, urep, is of length n and corresponds to all the samples where the

repetitive states are defined. Similar to the averaging matrix P , the number of rows
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Figure 2.8: Tracking performance with the repetitive controller

of S depends on the engine speed and sampling rate as it relates the crank-angle

domain to the time domain.

As a final step, this input trajectory urep is advanced in time by d time steps, 12 in

this case for the particular system, to account for the response delay. The parameter

d is found empirically so that the repetitive controller converges on the EHVS.

2.4 Tracking Performance: Combined Control Law

The algorithm is implemented with the same desired profile as before. The tracking

performance achieved by the combination of the LQT controller and the repetitive

controller is shown in Fig. 2.8. As can be seen, the tracking error with this set-up is

further improved when compared to the response with only the LQT controller shown

in Fig. 2.5. The maximum tracking error in Fig. 2.8 is within ±0.08 mm.
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Figure 2.9: Low- and high-lift profile

2.4.1 Step Lift Change

The repetitive controller is tested in the case of switching between two different valve

lifts. The two different valve lifts are 3 mm and 5 mm and are shown in blue in Fig.

2.9. These two profiles are switched every five seconds or 75 engine cycles at 1800

RPM. The steady-state tracking performance is plotted in blue in Fig. 2.9. The RMS

tracking error is calculated for the period when the valve is opened in each engine

cycle and is plotted in Fig. 2.10. As can be seen, the RMS tracking error jumps up

every time the desired profile is switched and decays as time progresses. The higher

RMS tracking error immediately after the profile change is expected, though its value

of 0.12 mm is still acceptable. The repetitive controller manages to reduce the RMS

error to below 0.04 mm as it learns the new input. It is possible to store the steady-

state repetitive input for a desired profile in advance. Whenever that specific desired

profile is needed, the corresponding repetitive input can be recalled and applied to

the system. This allows any profile switch to be achieved in one engine cycle and

gets around the finite time required for the repetitive controller to converge to the

steady-state input.
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Figure 2.10: RMS tracking error for variable lift

2.4.2 Step Opening Duration Change

One immediate problem arises if one wishes to change the valve opening duration.

This means that a different number of repetitive states are needed to accommodate

the different opening durations. One example of such a change is shown in blue in

Fig. 2.11. The valve opening timing is fixed at 100 CAD and the closing timing is

varied between 300 CAD and 240 CAD. Since the difference between the two profiles

is that one has a longer duration at maximum valve lift, the extra states at maximum

lift are thrown away for the short-duration profile. These additional repetitive states

are recalled if the long-duration profile is needed again. At 1800 RPM, a scenario

where the two desired profiles are switched every 5 seconds is tested. The steady-state

tracking performance is plotted in blue in Fig. 2.11. The RMS tracking error plotted

in Fig. 2.12 is below 0.04 mm for all times in this experiment.

2.4.3 Engine Speed Transient

In this test, the engine speed increases from 1500 RPM to 2500 RPM in 3 s. The

engine speed variation is shown in the top plot of Fig. 2.13. The corresponding RMS
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Figure 2.11: Long- and short-duration profile

tracking error is shown in the bottom plot of Fig. 2.13. As can be seen from the

plot, the RMS error increases immediately when the engine speed starts to increase.

After the engine speed settles, the repetitive controller learns a new input and the

tracking error converges to a steady-state value under 0.04 mm. Comparable tracking

performance was achieved with this controller on two additional EHVS systems with

different hardware.

2.5 Stability and Mean Tracking Error Variance

Analysis

To provide a solid analytical background for the tested repetitive control algorithm

described in Section 2.3, a stability and a mean tracking error variance analysis are

presented in this section to complete the mathematical framework for this work.
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Figure 2.12: RMS tracking error for variable opening duration

2.5.1 Stability Analysis

Throughout this section, the system is assumed linear and time invariant. For clarity,

the following stability analysis is derived with the pole placement controller described

in Section 2.2.1. It should be noted that a similar stability analysis can be derived if

one chooses to incorporate the linear quadratic tracking controller instead. The two

feedback controllers in Section 2.2 differ in structure in that the LQT controller has

a feed-forward that depends on the future desired trajectory. It will be demonstrated

that this difference does not affect the stability criterion developed in this section.

The open-loop EHVS model can be expressed in the state space form:

x(t+ 1) = A · x(t) +B · (u(t) + urep(t))

y(t) = C · x(t) (2.9)

where

x ∈ R8 are the true states

u ∈ R is the feedback control input
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Figure 2.13: Effect of engine speed transients

urep ∈ R is the repetitive control input

A ∈ R8×8

B ∈ R8

C ∈ R1×8

The identified model is assumed to have the same system matrices A, B, C as the

actual EHVS. Therefore, the observer has the following form:

x̃(t+ 1) = A · x̃(t) +B · u(t) + L · (C · x(t)− C · x̃(t)) (2.10)

where

x̃ ∈ R8 are the observed states

L ∈ R8 is the observer gain

Note that the repetitive control input is not fed to the observer. This is because

the feedback controller views the repetitive control input as a disturbance and tries
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to reject it if the observer knows its presence. Finally, the pole placement feedback

control law can be expressed as:

u(t) = N̄ · ydes(t)−K · x̃(t) (2.11)

where

K ∈ R1×8 is the feedback gain

N̄ ∈ R is the reference input gain

Note that this control law differs from the LQT controller described in Equation

(2.5) in that the LQT controller has a feed-forward dependent on the future desired

trajectory. Equation (2.9), (2.10) and (2.11) can be combined to define the closed

loop system dynamics:

[
x(t+ 1)

x̃(t+ 1)

]
=

[
A −BK
LC A−BK − LC

]
·
[
x(t)

x̃(t)

]

+

[
BN̄

BN̄

]
· ydes(t) +

[
B

0

]
· urep(t)

y(t) =
[
C 0

]
·
[
x(t)

x̃(t)

]
(2.12)
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To simplify the notation, the following matrices and vectors are defined:

Â =

[
A −BK
LC A−BK − LC

]

B̂1 =

[
BN̄

BN̄

]

B̂2 =

[
B

0

]

Ĉ =
[
C 0

]

x̂(t) =

[
x(t)

x̃(t)

]
(2.13)

The closed loop system can therefore be expressed as follows:

x̂(t+ 1) = Â · x̂(t) + B̂1 · ydes(t) + B̂2 · urep(t)
y(t) = Ĉ · x̂(t) (2.14)

With the closed loop system established, the trajectory of the system output can

be related to the initial conditions and the input trajectories with Toeplitz matrices.

To analyze the stability of the repetitive control algorithm, the system output for the

n time steps where the repetitive states are defined in engine cycle k is shown below.

y(k) = T1 · ydes + T2 · u(k)rep (2.15)

where

T1 =




0 0 . . . 0

ĈB̂1 0 . . . 0
...

...
. . .

...

ĈÂn−2B̂1 ĈÂn−3B̂1 . . . 0



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T2 =




ĈÂd−1B̂2 ĈÂd−2B̂2 . . . 0

ĈÂdB̂2 ĈÂd−1B̂2 . . . 0
...

...
. . .

...

ĈÂn+d−2B̂2 ĈÂn+d−3B̂2 . . . ĈÂd−1B̂2




y =
[
y(t+ 1) . . . y(t+ n)

]T

ydes =
[
ydes(t+ 1) . . . ydes(t+ n)

]T

urep =
[
urep(t+ 1− d) . . . urep(t+ n− d)

]T

If the LQT controller is chosen in this derivation in place of the pole placement

controller, T1 would have a different structure but T2 maintains the same structure.

Assuming steady state operation where the desired valve trajectory is fixed from

cycle to cycle, ydes does not change from one cycle to the next. Note that the repetitive

control input is advanced in time by d time steps, as pointed out in the last paragraph

of Section 2.3. The initial conditions are neglected in the equation since they do not

affect the following stability analysis as long as they stay unchanged from one engine

cycle to the next. This is a fair assumption since the engine valves stay closed for

a large portion of the time in one engine cycle. Therefore, any transients of EHVS

after valve closure have sufficient time to die out before the next valve opening event.

As a result, when considering the output trajectory of these n time steps, the system

can be safely assumed to start from the same initial conditions from cycle to cycle.

To establish the stability of the repetitive controller, the same algorithm and no-

tations described in Section 2.3 is followed. Combining Equation (2.7) and Equation

(2.8) gives the following expression that represents the repetitive control law in the

time domain:

u(k)rep = u(k−1)rep + kI · S ·M · E(k−1) (2.16)

Substituting Equation (2.16) into Equation (2.15) gives:

y(k) = T1 · ydes + T2 · u(k−1)rep + kI · T2 · S ·M · E(k−1) (2.17)
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Note that the first two terms on the right hand side of Equation (2.17) can be com-

bined to be y(k−1) using (2.15). This gives:

y(k) = y(k−1) + kI · T2 · S ·M · E(k−1) (2.18)

It should be clear at this point that if the LQT controller is used in this derivation

in place of the pole placement controller, Equation (2.18) remains the same. This is

because introducing the LQT controller only changes T1 in (2.17) and does not affect

the result shown in (2.18). The stability proof, therefore, does not depend on which

feedback controller is incorporated into the analysis.

To look at how mean tracking error propagates, recall that E(k) = P · (ydes−y(k)).
So with Equation (2.18):

E(k) = P · (ydes − y(k))
= P · (ydes − y(k−1))− kI · P · T2 · S ·M · E(k−1) (2.19)

Noting that the first term on the right hand side of Equation (2.19) is just E(k−1).

This gives:

E(k) = E(k−1) − kI · P · T2 · S ·M · E(k−1)

= (I − kI · P · T2 · S ·M) · E(k−1) (2.20)

Further defining AE = I − kI · P · T2 · S ·M to simplifies the notation gives:

E(k) = AE · E(k−1) (2.21)

Equation (2.21) relates the mean tracking error of the previous engine cycle to the

current cycle. Essentially, AE describes the error dynamics of the system. Therefore,

the mean tracking error approaches zero asymptotically if the eigenvalues of AE satisfy

the following condition:

|λi(AE)| < 1, ∀i = 1, 2, . . . ,m (2.22)
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This condition states that if all the eigenvalues of AE lies within the unit circle on the

complex plane then the mean tracking error converges to zero asymptotically. Using

this formulation and the parameters of the EHVS, it is verified analytically that the

mean tracking error indeed converges to zero. The eigenvalues of AE can also serve

as a quantitative metric to compare different repetitive controller designs, since they

relate directly to the rate of convergence of the system.

2.5.2 Tracking Error Variance Analysis

In a more realistic setting, the LVDT measurements inevitably have some sensor noise

characteristics. The mean tracking error in this case is a function of the random sensor

noise and, therefore, is a random variable itself. It is desirable to know the variance

of the steady-state mean tracking error if the sensor noise characteristics are given,

since it establishes confidence bounds on the steady-state mean tracking error. Of

course, the system can in reality exhibit more variation compared to the analysis in

this section. For example, un-modeled dynamics that are certainly present in any

real world application can potentially make the actual tracking error variance exceed

the predictions in this section. However, given the sensor noise characteristics, the

bound presented in this section can serve as a best-case scenario that one can hope to

achieve with the EHVS. If this optimistic bound is deemed too great to be acceptable,

there are potential design changes on the system that are necessary.

In the following analysis, the valve trajectory that the LVDT measures is assumed

to be corrupted by a zero-mean Gaussian noise with covariance Σw. Furthermore, it is

assumed that the measurement noise of two different engine cycles is independent and

identically distributed (IID). This analysis starts from Equation (2.15) and follows

the same derivation shown previously with the addition of the measurement noise to
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the equation:

y(k) = T1ydes + T2u
(k)
rep + w(k)

= T1ydes + T2u
(k−1)
rep + kIT2SME(k−1) + w(k)

= y(k−1) + kIT2SME(k−1) + w(k) − w(k−1)

= y(k−1) + kIT2SME(k−1) − v(k) (2.23)

where

Σw ∈ Rn×n and is symmetric and positive definite

w ∼ N(0,Σw)

v(k) = w(k−1) − w(k)

Recall that E(k) = P · (ydes − y(k)), one can perform the same operations as shown

in Equation (2.19) on Equation (2.23). This gives an expression that is similar to

Equation (2.21):

E(k) = AE · E(k−1) + P · v(k) (2.24)

Back-propagating the error dynamics gives the following equation:

E(k) = AkE · E(0) +
k−1∑

i=0

AiE · P · v(k−i) (2.25)

To find out the steady-state mean tracking error variance, let k approach infinity and

look at the covariance of E(k) :

Cov( lim
k→∞

E(k)) = Cov( lim
k→∞

AkE · E(0) +
k−1∑

i=0

AiE · P · v(k−i)) (2.26)

The error dynamics given by AE are assumed stable here; therefore, the first term of

Equation (2.26) vanishes when the limit is taken to infinity. This gives:

Cov( lim
k→∞

E(k)) = Cov( lim
k→∞

k−1∑

i=0

AiE · P · v(k−i)) (2.27)
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Expanding the right side of Equation (2.27) requires the knowledge of how v(i) cor-

relates with v(j) for all i, j. To that end, v(k) , v(k−1) and v(k−2) are expressed as

functions of w(k), w(k−1), w(k−2) and w(k−3):



v(k−2)

v(k−1)

v(k)


 =




1 −1 0 0

0 1 −1 0

0 0 1 −1







w(k−3)

w(k−2)

w(k−1)

w(k)




(2.28)

Obvious from the above equation, v(k) is correlated to v(k−1) but not correlated to

v(k−2). Since the w(k) are zero-mean IID Gaussian random variables with variance

Σw, the distribution of the random vector [v(k−2) v(k−1) v(k)]T can be expressed as:



v(k−2)

v(k−1)

v(k)


 ∼ N(0,Σv) (2.29)

where

Σv =




2Σw −Σw 0

−Σw 2Σw −Σw

0 −Σw 2Σw




With this example, one can conclude the expected value of v(i) · (v(j))T is:

E[v(i) · (v(j))T ] =





2Σw , if i− j = 0

−Σw , if |i− j| = 1

0 , if |i− j| ≥ 2

(2.30)

Since the v(i) are zero-mean, Equation (2.27) becomes:
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Cov( lim
k→∞

E(k)) = Cov( lim
k→∞

k−1∑

i=0

AiE · P · v(k−i))

= E[ lim
k→∞

k−1∑

i=0

k−1∑

j=0

AiE · P · v(k−i) · (AjE · P · v(k−j))T ]

(2.31)

Using the knowledge that v(i−n) is uncorrelated to v(i) when |n| ≥ 2, Equation (2.31)

can be expressed as:

Cov( lim
k→∞

E(k))

= E[ lim
k→∞

k−1∑

i=0

AiE · P · v(k−i) · (AiE · P · v(k−i))T

+
k−1∑

i=0

Ai+1
E · P · v(k−i−1) · (AiE · P · v(k−i))T

+
k−1∑

i=0

AiE · P · v(k−i) · (Ai+1
E · P · v(k−i−1))T ]

(2.32)

Finally, using the relations in Equation (2.30) gives the following:

Cov( lim
k→∞

E(k)) = 2 · Σ− AE · Σ− Σ · ATE (2.33)

where

Σ =
∞∑

i=0

AiE · P · Σw · P T · (ATE)i

Since AE is stable, the infinite sum that defines Σ converges. Furthermore, Σ

satisfies the following Lyapunov equation:

AE · Σ · ATE = Σ− P · Σw · P T (2.34)
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Once the sensor noise covariance Σw is characterized, one can solve Equation (2.34)

for Σ and use (2.33) to calculate the steady-state mean tracking error covariance.

With this covariance matrix, a confidence bound on the steady-state mean tracking

error can be established.

2.6 Conclusion

An EHVS gives researchers the capability to quickly implement and validate new

valve strategies on an internal combustion engine. However, the benefits of using

this powerful rapid prototyping tool can only be reaped if the valve motion is ac-

curately controlled. This chapter shows that the dynamics of an EHVS can be well

approximated by a third-order linear model with input delay. It is also shown that

the tracking performance with feedback controllers is inadequate due to this response

delay. To ensure accurate valve motion in a research laboratory setting, the proposed

repetitive control algorithm is demonstrated to be very effective for further improving

the tracking performance.

The repetitive controller generates an auxiliary input adaptively based on the valve

tracking error of each engine cycle. With this auxiliary input augmenting the feedback

controllers, steady-state RMS tracking errors under 40 µm for various different desired

valve profiles are achieved. Besides excellent tracking performance, the adaptive

nature of the repetitive control algorithm can readily handle system parameter drifts

as an EHVS warms up during operation.

The simple repetitive control algorithm proposed is not only observed to be stable

in experiments but also proven analytically. Furthermore, the mathematical frame-

work developed can be extended to include sensor noise characteristics that lead to

confidence bounds on steady-state mean tracking errors. The methodology described

in this chapter that includes system identification, feedback control design and repet-

itive control design has been proven to work well on multiple EHVSs with different

hardware.



Chapter 3

The Nonlinear Model

From Chapter 3 onwards, this thesis shifts its focus from the EHVS to recompression

HCCI. The work presented in this thesis uses the control-oriented, single-zone model

developed by Ravi et al. [58] as a launching point. In this chapter, a summary of

the model and some of its equations are given. Throughout this thesis, this model is

referred to as the nonlinear model or simply as the NL. The nonlinear model captures

the cycle-to-cycle dynamics of recompression HCCI as shown in [58] and is able to

reflect how various inputs influence the combustion timing of HCCI. However, for the

purpose of this thesis, the exhaust valve closure (EVC) point is chosen as the only

input to the system and it captures the amount of exhaust trapped in the cylinder,

which initiates HCCI on the next engine cycle. The model output, the combustion

timing, is represented by the engine position where fifty percent fuel energy conversion

occurs, denoted as θ50.

3.1 Summary of the Nonlinear Model

The start of an engine cycle in the nonlinear model is defined at 300 CAD referenced

from recompression TDC. In-cylinder oxygen content and temperature at 300 CAD

are chosen as the system states. The choice of this particular engine position is

motivated by the fact that 300 CAD is a point after the breathing process, therefore,

the air-fuel charge is fixed in its composition. There are seven points defined at seven

45
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Figure 3.1: The seven breakpoints of the nonlinear model in an engine cycle

distinct engine positions in a cycle and they are listed below:

Point 1: State definition point at 300 CAD (θs)

Point 2: Ignition (ign)

Point 3: End of combustion (eoc)

Point 4: Exhaust valve opening (evo)

Point 5: Exhaust valve closure (evc)

Point 6: Intake valve opening (ivo)

Point 7: Intake valve closure (ivc)

The shorthand notations in the parantheses are used to refer to these distinct engine

positions. These breakpoints are illustrated in Fig. 3.1 along with a typical pressure

trace. There are six variables in the model equations that are directly related to the

thermo-chemical conditions of the in-cylinder gas. These are listed below:
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n : Total number of moles in the cylinder

p : In-cylinder pressure

T : In-cylinder temperature

V : Cylinder volume

nO2 : Number of moles of oxygen in the cylinder

nf : Number of moles of gasoline in the cylinder

The first four variables specify the thermodynamic states of the in-cylinder gas. Note

that knowing three of these four variables is sufficient to completely describe the ther-

modynamic states of the in-cylinder gas, as the remaining unknown variable can be

calculated based on the ideal gas law assumption. The last two variables, nO2 and

nf are associated with the chemical conditions of the in-cylinder gas. Other variables

that appear in the model equations are parameters for describing environmental con-

ditions or engine characteristics. The six thermo-chemical variables listed above can

be further given subscripts to specify the thermo-chemical conditions at a particular

engine position. For example, Vevc is the cylinder volume at the exhaust valve closure

point and pθs is the pressure at the state definition point. Therefore, the states, x, of

the nonlinear model are defined as:

x =

[
nO2
θs

Tθs

]
(3.1)

There are mainly two reasons that motivate the choice of system states shown in

Equation (3.1). Firstly, the temperature state, Tθs , in Equation (3.1) is represen-

tative of the thermodynamic conditions of the in-cylinder gas. This is because the

gas pressure at the state definition point is assumed constant in this model, and the

cylinder volume at 300 CAD is known. Therefore the temperature state, Tθs , com-

pletes the description of the thermodynamic states of the in-cylinder gas at the state

definition point. Secondly, the two physical quantities, oxygen content and tempera-

ture, defining the system states can be related to ignition timing using an Arrhenius
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global reaction rate model shown in Equation (3.2), as described by Shaver [59]. The

reaction rate is the integrand shown in (3.2), which is exponentially dependent on

the in-cylinder temperature, and proportional to powers of the oxygen and fuel con-

centration. In this model, ignition is defined as the instance when the value of this

integral exceeds a threshold Kth.

θign =

{
θτ

∣∣∣Kth =

∫ θτ

θs

A · e
−Ea
R·Tθ · [nO2

θs
]a · [nfθs ]b ·

1

ω
dθ

}
(3.2)

where

θ is the engine position

ω is the engine speed

Tθ is the in-cylinder temperature as a function of the engine position θ

[
nO2
θs

]
is the oxygen concentration, inversely proportional to the cylinder volume

[
nf
]

is the fuel concentration, inversely proportional to the cylinder volume

The model output, θ50, is further defined as one-half of the combustion duration after

the ignition point:

θ50(k) = θign(k) + 0.5 · θdurn (3.3)

where θdurn is the combustion duration.

The combustion timing of HCCI, θ50, is therefore dependent on the in-cylinder

temperature, oxygen concentration and fuel concentration, in descending order of

their relative sensitivity. Note that the Arrhenius model defines the second break-

point, the ignition point, in a cycle, which is an implicit function of the states as

can be seen in Equation (3.2). Combining (3.2) and (3.3) gives a nonlinear output

equation that relates the system states to the output:

θ50(k) = h
(
nO2
θs

(k), Tθs(k)
)

(3.4)
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The seven breakpoints define seven cascading stages in an engine cycle as listed

below:

Stage 1: Polytropic compression from 300 CAD to autoignition

Stage 2: Constant-duration combustion

Stage 3: Polytropic expansion from EOC to EVO

Stage 4: Polytropic blowdown and exhaust from EVO to EVC

Stage 5: Recompression from EVC to IVC

Stage 6: Adiabatic induction from IVO to IVC

Stage 7: Polytropic compression from IVC to 300 CAD on the next engine cycle

Seven sub-models propagate the two system states from the start of a stage to the

end of a stage based on simple thermodynamic assumptions. These seven sub-models

are summarized briefly in this chapter. The derivation of these sub-models is given

in Appendix A.

Stage 1: Polytropic compression from 300 CAD to ignition

nO2
ign(k) = nO2

θs
(k) (3.5)

Tign(k) = Tθs(k) ·
(

Vθs
Vign(k)

)κ1−1
(3.6)

The end of this stage is defined by the ignition point shown in Equation (3.2). Note

that due to the use of the Arrhenius integral, θign cannot be expressed as an explicit

function of the states. It is, however, easy to simulate the resulting θign given the

values of oxygen content and temperature at the state definition point. The parame-

ter, κ1, is the polytropic exponent associated with Stage 1, and is assumed constant

during this stage. Using this convention, κi represents the polytropic exponent for

Stage i.
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Stage 2: Constant-duration combustion from ignition to end of combustion

nO2
eoc(k) = nO2

ign(k)− λstoich · nfθs (3.7)

Teoc(k) = Tign(k) ·
(
Vign(k)

Veoc(k)

)κ2−1
+

E · nfθs
(Cv,f − Cv) · nfθs + Cv · nθs(k)

(3.8)

where

θeoc(k) = θign(k) + θdurn

E = (1− ε) · LHVf + (3.25 · Cv − Cv,f ) · T amb

λstoich is the stoichiometric oxygen-fuel ratio

The combustion process has a constant duration defined by θdurn. Energy conversion

from fuel oxidation is modelled as instantaneous at the end-of-combustion point.

The amount of energy per unit fuel quantity, E, added to cylinder constituents is

given above. The variable ε in the expression of E accounts for the heat transfer

during combustion as a portion of the lower heat value (LHV) of the fuel. The

term (3.25 · Cv − Cv,f ) · T amb in the expression is the results of accounting for the

change in the total number of moles and the average specific heat before and after a

lean combustion. The variable, T amb, is the ambient temperature that serves as the

reference temperature in the first law analysis. The denominator of the second term

in Equation (3.8) represents the product of the average specific heat of the in-cylinder

gas and the total amount of gas in the cylinder. A lean mixture is assumed; therefore

the oxygen content after combustion is given in Equation (3.7).

Stage 3: Polytropic expansion from EOC to EVO

nO2
evo(k) = nO2

eoc(k) (3.9)

Tevo(k) = Tevc(k) ·
(
Veoc(k)

Vevo(k)

)κ3−1
(3.10)

The expansion after combustion is modelled as a polytropic process.
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Stage 4: Polytropic blowdown and exhaust from EVO to EVC

nO2
evc(k) = nO2

evo(k) · nevc(k)

nevo(k)
(3.11)

Tevc(k) = Tevo(k) ·
(

pem

pevo(k)

)1− 1
κ4

(3.12)

where

nevo(k) = neoc(k) = nign(k) = nθs(k)

nevc(k) = pem·Vevc(k)
R·Tevc(k)

pevo(k) = peoc(k) ·
(
Vevo(k)
Vign(k)

)κ2

pem is the exhaust manifold pressure.

The ratio between nevc and nevo seen in Equation (3.11) is the percentage of exhaust

trapped in the cylinder at EVC. This ratio is, of course, a strong function of the EVC

timing and is typically in the range of 0.5∼0.6 for recompression HCCI. Furthermore,

the total number of moles of gas in the cylinder is assumed unchanged before and

after combustion. The in-cylinder pressure at EVC is assumed to be equal to the

exhaust manifold pressure, pem.

Stage 5: Recompression from EVC to IVO

nO2
ivo(k) = nO2

evc(k) (3.13)

Tivo(k) = Tevc(k)− h

nivo(k) · Cv
·
(

1

2
· Tevc ·

(
1 +

(
Vevc(k)

V tdc

)γ−1)
− Twall

)
(3.14)

where

nivo(k) = nevc(k)

h is a lumped heat transfer parameter.
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The variable γ in Equation (3.14) is the specific heat ratio of air. Therefore, the

term 1
2
· Tevc ·

(
1 +

(
Vevc(k)
V tdc

)γ−1)
in Equation (3.14) is a measure of the average,

isentropic temperature during recompression. The amount of heat transfer during

recompression is modelled as proportional to the difference between the average in-

cylinder temperature and cylinder wall temperature. Equation (3.14) provides a

simple construct to capture the effect of cylinder wall temperature on the system

states.

Stage 6: Adiabatic induction from IVO to IVC

nO2
ivc(k) = nO2

ivo(k) + χ · nind(k) (3.15)

Tivc(k) =
pim · Vivc(k)

R · (nivo(k) + nind(k))
(3.16)

where

nind(k) = Cv
Cp·R·T im · (p

im · Vivc − nivo(k) ·R · Tivo(k))

pim is the intake manifold pressure.

The amount of fresh air inducted, nind, multiplied by the molar concentration of

oxygen in air (around 0.2), χ, gives the increase in the oxygen content at IVC. The

pressure at IVC is assumed to be equal to the intake manifold pressure pim. The total

amount of gas at IVC, the sum of nind and nivo, determines the temperature at IVC

based on the ideal gas law.

Stage 7: Polytropic compression from IVC to θs

nO2
θs

(k + 1) = nO2
ivc(k) (3.17)

Tθs(k + 1) = Tivc(k) ·
(
Vivc
Vθs

)κ7−1
(3.18)

The system states on the next engine cycle can be propagated from IVC with a

polytropic process. Note that the gas pressure at the state definition point, pθs , can
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be obtained with the polytropic process:

pθs(k + 1) = pivc(k) ·
(
Vivc(k)

Vθs

)κ7
= pim ·

(
Vivc(k)

Vθs

)κ7

Since pivc = pim, the pressure at the state definition point is constant given a fixed

intake manifold pressure.

The composition of these seven sub-models, therefore, gives a cycle-by-cycle model.

The propagation of states from one cycle to the next can be summarized by two non-

linear equations:

nO2
θs

(k + 1) = f
(
nO2
θs

(k), Tθs(k), Vevc(k)
)

Tθs(k + 1) = g(nO2
θs

(k), Tθs(k), Vevc(k)) (3.19)

Equation (3.4) and Equations (3.19) combined describe a discrete-time, single-

input-single-output, nonlinear dynamical system.

This nonlinear model captures the cycle-to-cycle dynamics of recompression HCCI

as shown in [58], and its relative simplicity makes the analysis and control synthesis

presented in this thesis tractable. While the NL is tuned to the particular experi-

mental testbed used in this thesis, its physics-based nature could potentially make

the insight shown in Chapter 4∼7 applicable to other recompression HCCI engines.



Chapter 4

Change in Recompression HCCI

Dynamics

Arguably, two of the most important control objectives for IC engines are the work

output and combustion timing. The work output of an HCCI engine is largely a

function of the amount of fuel [59, 60] in the cylinder, assuming complete combus-

tion of fuel and that ignition occurs at the designated timing. Therefore, control of

combustion timing is, in some sense, the more fundamental problem in HCCI control.

As outlined in Chapter 1, residual-affected HCCI presents several challenges in con-

trolling its combustion timing, i.e., the lack of direct ignition trigger, cycle-to-cycle

coupling, and drastic change in system dynamics. Particularly, the change in system

dynamics compounds the first two challenges when one wishes to operate HCCI over

a wide range.

The change in recompression HCCI dynamics can be best seen from the com-

bustion timing response. Two sets of open-loop, steady-state combustion timing

trajectories of an experimental HCCI testbed are shown in Fig. 4.1. In this figure,

combustion timing is represented by θ50, the engine position where fifty percent fuel

energy conversion occurs (referenced from gas-exchange TDC). These two trajecto-

ries are generated with only one difference in inputs: the top plot of Fig. 4.1 has

an earlier exhaust valve closure (EVC) timing to trap more exhaust in the cylinder.

54
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Figure 4.1: Early-phasing vs. late-phasing operation

As a result, the mixture temperature is higher on average which results in an ear-

lier mean combustion timing compared to the bottom plot. Besides the difference in

mean response, the variances of the responses are dramatically different in the two

trajectories. Large oscillations in the bottom plot suggests that the system dynamics

change significantly around this late ignition phasing operating point.

The oscillatory response of late phasing operation is clearly undesirable, but this

operating point has merits from a practical point of view. An HCCI event delayed

away from TDC occurs over a larger cylinder volume which decreases the rate of

pressure rise during combustion. Therefore, late phasing HCCI is attractive in terms

of reducing the audible engine noise and stress experienced by the cylinder, especially

under high load conditions. Running the engine at the late phasing point, however,

requires an understanding of how HCCI dynamics change in a wide range of operating

conditions and appropriate cycle-by-cycle feedback control to improve the open-loop

response.

Since the purpose of this chapter is understanding the change of system behavior,

EVC is chosen as the only input for simplicity. Furthermore, the injected fuel quantity

is assumed constant. It should be clear later that the insight of this chapter is still

valid under a different amount of injected fuel, i.e., at a different load condition. This
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chapter first uses a graphical approach to analyze the temperature dynamics around

different operating points of the nonlinear model described in Chapter 3. The results

show that there are three qualitative types of temperature dynamics across a wide

range of recompression HCCI operations. This chapter further presents a three-region

switching linear model that captures the qualitative change in system dynamics for

control purposes.

4.1 Change in Temperature Dynamics

For a qualitative understanding of how HCCI dynamics change from one operating

point to another, this sections presents a graphical analysis of the nonlinear model.

Similar visualization techniques were used by Chiang et al. [51] and by Kang et al.

[41] to analyze HCCI temperature dynamics. This graphical analysis shows how in-

cylinder temperature at 300 CAD (60 CAD before combustion TDC) and 420 CAD

(60 CAD after combustion TDC) evolve on a cycle-to-cycle basis. The temperature

at 300 CAD, T300 (or Tθs, since 300 CAD is the state definition point of the NL),

can be related roughly to ignition phasing, since ignition phasing is typically far

more sensitive to temperature than oxygen concentration [61]. Knowing how T300

evolves from one cycle to the next gives much information about the combustion

timing response. The temperature at 420 CAD (T420) is a measure of the exhaust

temperature, since this is a point after the end of combustion. T420 is of great interest

because it represents the energy density of the exhaust that initiates the next HCCI

event.

T300 and T420 are, of course, coupled. Besides the obvious fact that the temper-

ature state, T300, is dependent on the exhaust temperature on the previous cycle in

recompression HCCI, there is also a correlation between T300 and T420 in the same

cycle. It follows that a certain T300 leads to a certain ignition phasing which, in turn,

determines the amount of heat transfer and work output during combustion and the

subsequent expansion stroke and ultimately has an impact on T420. With simplifying

assumptions in the oxygen mode, the nonlinear model can generate two temperature

maps: a combustion map that shows how T300(k) relates to T420(k), and a breathing
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Figure 4.2: Combustion temperature map

map that shows how T420(k) relates to T300(k+ 1). The variable k here represents the

engine cycle index.

4.1.1 Combustion Temperature Map

During the combustion stage, Fig. 4.2 shows how T300 at the beginning of the stage

relates to T420 at the end of the stage, as indicated by the arrows in this plot. Note

that both the oxygen content and temperature state have an effect on ignition timing

in the nonlinear model and, therefore, can both influence the exhaust temperature,

T420. However, since ignition phasing is more sensitive to changes in temperature

than oxygen content, neglecting the effect of oxygen content is a reasonable starting

point. The effects of oxygen content are explicitly included later in the chapter. The

data points shown in the 1-D map are obtained by varying the exhaust valve timing

in steady state.

In Fig. 4.2, the bowl-shaped relationship shown is the result of changing heat

transfer and work output characteristics across a wide combustion timing range. Note
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Figure 4.3: Area-to-volume ratio: early-ignition vs. late-ignition

that the rightmost data point in Fig. 4.2 corresponds to a θ50 close to 360 CAD

(combustion TDC). This is why, locally, the temperature relationship in the region

marked 1 in Fig. 4.2 shows a positive slope. In this region, a change in the charge

temperature on the x-axis leads to a θ50 close to combustion TDC where the cylinder

volume is changing relatively slower. Therefore, the amount of heat transfer and

work output is not sensitive to a change in combustion timing. As a result, the bulk

temperature effect dominates in Region 1, i.e., a higher charge temperature, T300,

monotonically leads to a higher exhaust temperature, T420.

As the charge temperature on the x-axis further decreases into the region marked

3 in Fig. 4.2, combustion timing becomes significantly later (the leftmost data point

in Fig. 4.2 has a θ50 of 11 CAD after combustion TDC). When the combustion

timing is sufficiently late, the amount of heat transfer during combustion and the

work output during the expansion stroke both reduce significantly. The lower heat

transfer can be attributed to a decrease in the mean area-to-volume ratio [45] and a

lower in-cylinder temperature during a late HCCI combustion. The area-to-volume
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ratio around TDC can be seen in Fig. 4.3. In this figure, two combustion events

take place in the shaded regions. In the bottom plot, late HCCI combustion occurs

away from TDC with a lower mean area-to-volume ratio compared to the early HCCI

combustion in the top plot. In addition, the average gas temperature during a late

combustion event is lower, as combustion occurs over a larger cylinder volume. This

creates a smaller temperature gradient between the in-cylinder gas and the cylinder

wall. These two effects result in lower overall heat transfer in a late phasing HCCI

event. Furthermore, work output typically decreases when HCCI occurs too late in

the expansion stroke. As a result, a late HCCI event yields exhaust gas of higher

internal energy which is why the exhaust temperature in Region 3 in Fig. 4.2 starts

to increase when the charge temperature is sufficiently low.

Roughly speaking, there exist three types of correlation between the charge and

exhaust temperature. In Region 1 in Fig. 4.2, there is a positive correlation between

T300 and T420. This region also has higher charge temperature corresponding to early

ignition phasing operations. On the other hand, Region 3 exhibits a negative corre-

lation between the two temperature and has low charge temperature corresponding

to late phasing operations. There is also a transitional region in between, Region 2,

where there is little correlation between the two temperatures.

4.1.2 Breathing Temperature Map

Fig. 4.4 shows how the exhaust temperature on one cycle relates to the charge

temperature on the next engine cycle. Naturally, this relationship depends on the

amount of exhaust trapped in the cylinder which is further dependent on the EVC

command. As a result, a given T420(k) on the y-axis can be paired with an EVC value

to map to a T300(k + 1) on the x-axis. The breathing temperature map matches the

intuition that a higher exhaust temperature monotonically leads to a higher T300(k+1)

given the same EVC. Also, a later EVC monotonically leads to a lower T300(k + 1)

given the same exhaust temperature on the previous cycle, due to the decrease in the

amount of trapped exhaust.
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Figure 4.4: Breathing temperature map

4.1.3 Temperature Trajectories around Different Operating

Points

The two temperature maps, Fig. 4.2 and Fig. 4.4, can be overlaid on top of each other.

A temperature trajectory can then be traced out starting from an initial temperature

by alternating the two temperature maps. In this section, one temperature trajectory

is shown within each of the three regions marked in Fig. 4.2.

The Early Ignition Phasing Region: Region 1

In Fig. 4.5, a temperature trajectory starts from an initial charge temperature marked

by the asterisk 1. After the first HCCI event, this charge temperature is mapped

to a certain exhaust temperature, T420, indicated by the circle 1’. This exhaust

temperature goes through the breathing stage and is further mapped to the charge

temperature marked by the asterisk 2. As can be seen, the temperature trajectory

eventually converges to the equilibrium marked by the intersection of the combustion

and breathing temperature maps. In Fig. 4.5, the charge temperature, indicated by
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Figure 4.5: Temperature trajectory around an early-phasing point

the asterisks, smoothly decays to the equilibrium value due to the locally positive

correlation between the charge and exhaust temperature during combustion. Note

that equilibria in this region are associated with early ignition timing due to the

higher charge temperature.

The Sweet Spot Region: Region 2

Similarly, a temperature trajectory inside the transitional region, Region 2 in Fig.

4.2, can be traced out in Fig. 4.6. As can be seen, the charge temperature roughly

converges to the equilibrium charge temperature within one cycle. This is because

there is very little correlation between T300 and T420 during combustion within this

region. In Region 2, any change in the charge temperature produces roughly the

same exhaust temperature and, therefore, leads back to the same nominal charge

temperature on the next cycle given the same EVC. This region is essentially a “sweet

spot” of HCCI operation in terms of its capability to reject disturbance, since any

charge temperature perturbations roughly die out in one cycle.
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Figure 4.6: Temperature trajectory around a sweet spot

The Late Ignition Phasing Region: Region 3

Finally, a temperature trajectory within the late ignition phasing region is shown

in Fig. 4.7. Compared to the early phasing region, the temperature correlation in

the combustion stage is reversed in the late phasing region, as can be seen from the

negative-sloped red line in Fig. 4.7. As a result, the charge temperature oscillates

about the equilibrium in Fig. 4.7 instead of the smooth convergence shown in Fig.

4.5. This behavior also coincides with the observation made on the experimental

testbed, i.e. the combustion timing response is oscillatory around a late phasing

operating point as shown in the bottom plot of Fig. 4.1. When this set of late phasing

operation data, which spans a wide combustion timing range, is further structured as

a lag plot shown in Fig. 4.8, a pattern emerges and further validates the three types

of temperature dynamics in this graphical analysis. The right half of Fig. 4.8 shows

a clear negative correlation structure i.e. a later θ50 on cycle k on the x-axis leads to

an earlier θ50 on cycle k + 1 on the y-axis. On the other hand, a positive correlation

can be seen in the left half of Fig. 4.8. In between these two dominant structures,
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Figure 4.7: Temperature trajectory around a late-phasing point

there is a transitional region where any change in θ50(k) on the x-axis roughly leads

to the same θ50(k + 1) on the y-axis.

Clearly, the change in system behavior is caused by the “bowl-shaped” combustion

temperature map shown in Fig. 4.2. Under a different fueling rate, the same physical

factors that lead to this bowl-shaped curve remain in place. Therefore changing the

amount of injected fuel roughly moves the combustion temperature map vertically.

As a result, the qualitative understanding in this section is the same under a different

load condition.

The graphical analysis suggests that there exist three types of temperature dy-

namics across the operating range due to the three qualitative types of temperature

correlations during combustion. As a result, a minimum of three linear models is

needed to describe recompression HCCI over its operating range. To obtain these,

the nonlinear model with both oxygen and temperature dynamics is linearized about

three equilibrium points: one equilibrium in each of the three regions in Fig. 4.2.
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Figure 4.8: Lag plot of combustion timing: late-phasing operation

4.2 Three Regions and Corresponding Linearized

Models

Before the linearization results are presented, the format of a linearized model is first

explained in Section 4.2.1.

4.2.1 Linearizations of the Nonlinear Model

To understand the local behavior of the nonlinear model, Equation (3.4) and Equa-

tions (3.19) can be further linearized about an equilibrium. A set of nominal state,

input and output values characterize this particular operating point and are denoted

as O2,i, Ti, VEV C,i and θ50,i. The resulting linearized system has the following struc-

ture:

x̃i(k + 1) = Ãi · x̃i(k) + B̃i · ũi(k)

ỹi(k) = C̃i · x̃i(k) (4.1)
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where

Ãi =


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∂n
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∂Tθs
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· nO2
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[
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
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O2
θs
−nO2

θs,i

n
O2
θs,i

Tθs−Tθs,i
Tθs,i




ũi =
Vevc − Vevc,i

Vevc,i

ỹi =
θ50 − θ50,i
θ50,i

The subscript i represents the variable value at the steady-state operating point

i. The ∼ symbol in (4.1) signifies the locality of these variables around the steady-

state operating point i. This notation becomes useful when multiple linearizations are

introduced. Under this structure, the states, input and output represent normalized

changes with respect to the steady-state values of the operating point. Comparing

the local behaviors around different equilibria makes more intuitive sense with this

linear model format.

4.2.2 Three Linearized Models

Picking one equilibrium in each of the three regions in Fig. 4.2 gives three linearized

models: The linearized model for the early ignition region (Region 1 in Fig. 4.2) is

given as:

Ã1 =

[
0.6037 0.3767

−0.0062 0.1876

]
B̃1 =

[
−2.3784

0.4428

]

C̃1 =
[
−0.0164 −0.4666

]
(4.2)
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For the sweet spot region (Region 2 in Fig. 4.2):

Ã2 =

[
0.5616 0.1913

−0.0115 −0.0112

]
B̃2 =

[
−1.6006

0.3929

]

C̃2 =
[
−0.0222 −0.6385

]
(4.3)

And lastly, for the late phasing region (Region 3 in Fig. 4.2):

Ã3 =

[
0.4922 0.0326

−0.0313 −0.6092

]
B̃3 =

[
−1.0481

0.3474

]

C̃3 =
[
−0.0549 −1.6905

]
(4.4)

Each linearization faithfully captures the qualitative behavior of the three regions

in the graphical analysis. Particularly, the A22 entry of each A matrix represents

how the temperature state on cycle k affects the temperature state on cycle k + 1.

During early ignition operations, it shows a positive A22 entry that corresponds to a

smooth decay. There is a strong negative A22 entry in Region 3 that shows highly

oscillatory dynamics in the late ignition timing region. Region 2 has an A22 entry that

is close to zero, signifying the “deadbeat” temperature dynamics that are impervious

to disturbance.

Other entries of the A matrix also give insights about the HCCI process. The A21

entries represent how oxygen concentration on one cycle affects the temperature state

on the next cycle. Since oxygen concentration has a minor effect on ignition timing,

it only has a small impact on the exhaust temperature which further translates to

small A21 entries in all three regions. On the other hand, the A12 entries change

their magnitudes notably due to the change in T300-T420 correlations across the range

of operation. This is because different exhaust temperatures affect the subsequent

breathing processes differently, and exert different influences on the oxygen concen-

tration on the next engine cycle. All A11 entries show a smooth decaying behavior

with a slower converging rate. Since recompression HCCI traps a fairly large portion

of the exhaust gas, it makes sense that an excess of oxygen takes several cycles to be



CHAPTER 4. CHANGE IN RECOMPRESSION HCCI DYNAMICS 67

bled out of the system. Capturing the oxygen dynamics in the first row of A can be

important in guaranteeing the air-fuel ratio stays within the permitted range.

4.3 The Switching Linear Model

Both the graphical analysis and the linearized models show that the entire operat-

ing range qualitatively possesses three sets of cycle-to-cycle temperature dynamics:

smooth decaying in the early ignition phasing region, oscillatory in the late phasing

region and strongly converging in the sweet spot region. As a result, a model that

switches between the three linearizations can capture the change in HCCI dynamics

for control purposes. Depending on which region the temperature state is in, the cor-

responding linear model is used to describe HCCI dynamics. It should be noted that

each linearization in Equations (4.2), (4.3) and (4.4) captures the system dynamics

about a different equilibrium. Each of the equilibria is associated with a different set

of steady-state oxygen content, temperature, VEV C and θ50 as defined in Equations

(4.1). Therefore, the same numerical values of system states from two different lin-

earized models represent different physical quantities. To arrive at an unified state,

input and output description, it is necessary to re-normalize each linear model with a

nominal set of steady state values. An example of the re-normalization can be found

in Appendix B. By choosing the steady-state values associated with the sweet spot

model (4.3), the resulting switching linear model can be expressed as:

x(k + 1) = Ai · x(k) +Bi · u(k) + di

y(k) = Ci · x(k) + ei

if x(k) ∈ Ωi, i = 1, 2, 3 (4.5)

where

Ωi , {x : Six ≤ Ri} (4.6)

The convention in Equations (4.2), (4.3) and (4.4) is followed which associates i = 1

to the early phasing region, i = 2 to the sweet spot region and i = 3 to the late

phasing region. Note that the ∼ symbols are dropped in Equations (4.5), since it
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is a global model instead of the local linearization shown in (4.1). The matrices Si

and Ri define the region where model i is active. Since the switching mechanism

is constructed according to temperature thresholds indicated by the vertical lines in

Fig. 4.2, this gives:

Si =

[
0 1

0 −1

]
Ri =

[
Ti,u

−Ti,l

]
(4.7)

where Ti,u and Ti,l are the upper and lower limits of each region. Also, the thresholds

have the following relatioship:

Ti,l = Ti+1,u (4.8)

Therefore, the lower temperature limit of a region is the upper limit of the next region.

The additional bias terms di and ei in Equations (4.5) stem from the nonlinear nature

of Equation (3.19) and Equation (3.4). Since the steady state values of the sweet

spot model are chosen as the standard states, input and output throughout the three

regions, d2 and e2, are identically zero.

The temperature thresholds for each region are chosen such that an equilibrium

always exists given a certain steady state input. Furthermore, this equilibrium is

unique. To satisfy these conditions, first define a steady state input, ui,l, that results in

a steady-state temperature with the ith linear model equal to the ith lower temperature

threshold, Ti,l:

Ti,l =
[

0 1
]
· (I − Ai)−1 · (Bi · ui,l + di) (4.9)

To fulfill the requirements of the region thresholds, the same-steady state input,

ui,l, drives the steady-state temperature with the i + 1th linear model to its upper

temperature threshold:

Ti+1,u =
[

0 1
]
· (I − Ai+1)

−1 · (Bi+1 · ui,l + di+1) (4.10)

With the relationship in Equation (4.8), equating Equation (4.9) and (4.10) and
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Figure 4.9: θ50 responses: test bed response compared to the the response of the
switching linear model(top left), the early-phasing model(top right), the sweet-spot
model(bottom left) and the late-phasing model(bottom right)

solving for ui,l gives:

ui,l =

[
0 1

]
·
[
(I − Ai+1)

−1 · di+1 − (I − Ai)−1 · di
]

[
0 1

]
·
[
(I − Ai)−1 ·Bi − (I − Ai+1)

−1 ·Bi+1

] (4.11)

Substituting the calculated ui,l from Equation (4.11) into Equation (4.9) gives the

lower temperature threshold for the ith region. Temperature thresholds for other

regions can be calculated in a similar manner.

To show that Equations (4.5) capture the cycle-to-cycle dynamics better than a
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single linearization, an EVC trajectory is randomly generated and fed to the switch-

ing linear model and the three local linearized models (4.2), (4.3) and (4.4). The

resulting θ50 responses are compared to the engine testbed subjected to the same

input trajectory shown in blue in Fig. 4.9.The root-mean-square (RMS) error in θ50

computed for each case. Not surprisingly, the switching linear model results in the

lowest RMS error when compared to the testbed. The early phasing model generates

a RMS error close to the switching linear model. This is because the randomly gen-

erated EVC trajectory is biased towards the early phasing region, favoring the early

phasing model in this particular test.

4.4 Conclusion

Compared to using a single linearization, it is not surprising that combining multiple

linearized models better approximates a nonlinear system over a wide range. As a

matter of fact, this is a widely used approach for designing gain-scheduling controllers

for nonlinear systems. There are two commonly quoted drawbacks with this approach.

Firstly, it is often unclear what the appropriate number of linearizations should be, as

a result, control design becomes an ad hoc process, i.e. increasing the number of lin-

earizations until satisfactory performance is achieved. Secondly, as switching between

a number of stable linear systems can cause instability, this approach is associated

with stability concerns. In this chapter, the graphical analysis quells the first concern

by revealing the three qualitative types of temperature dynamics: smooth converging

in the early phasing region, oscillatory in the late phasing region and strongly con-

verging in between. Of particular interest is that the oscillatory dynamics coincide

with the highly variable ignition phasing response observed on the testbed around a

late phasing operating point. The ability to make this problematic operating point

usable in closed-loop is a benchmark for the switching controller presented in the

next chapter. Furthermore, Chapter 5 aims to address the second drawback of the

switching modeling/control approach by providing both experimental and analytical

stability evidence.



Chapter 5

Combustion Timing Control with a

Switching Controller

The three-region switching linear model is motivated by the insight that there exist

three types of temperature dynamics across a wide range of recompression HCCI oper-

ation. The model captures the qualitative change in system behavior and has a simple

structure for control synthesis. Based on this model, this chapter further presents a

three-region switching controller that consists of three local LQR controllers. This

switching controller is evaluated on the engine testbed and is effective across a wide

range of desired combustion timing. Particularly, the problematic late phasing op-

erating point shown in the bottom plot of Fig. 4.1 is made well-behaved with the

switching controller in closed-loop. This chapter also reveals that a local linear con-

troller has a directionality error when the operating conditions deviate sufficiently

from the linearized point, which causes misfires on the testbed. This demonstrates

the drawback of using a single linear controller commonly employed in previous work

on combustion timing control of HCCI.

In the last part of this chapter, two semi-definite programs (SDP) are presented

to establish the stability properties of the switching model/control formulation. It is

well known that even switching between a number of stable linear systems can cause

instability. The stability guarantees serve as an analytical check and echoes the con-

troller’s success on the experimental testbed. Furthermore, although the switching

71
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linear model is intended as a platform for tractable control design, it is a reason-

able approximation of the experimental testbed as shown in Fig. 4.9; therefore, the

stability statements presented can be viewed as a preliminary investigation of global

stability of recompression HCCI.

Due to the close connection between Chapter 4 and Chapter 5, the same conven-

tions and variable names are used in these two chapters.

5.1 The Switching LQR Controller

Just as with the switching linear model, a switching controller can be formed with

three local controllers. One approach to obtain these local controllers is by designing

three LQR controllers based on the three linearized systems (4.2), (4.3) and (4.4).

5.1.1 Local LQR Controllers

Each of the three local feedback control laws is given as:

ũi(k) = −K̃i · x̃i(k) (5.1)

where x̃i, K̃i and ũi are the states, feedback gains and input for the ith linearized

system defined in Equations (4.2), (4.3) and (4.4). These controllers are derived so

that they optimize the respective cost functions (5.2) with the same weights Q and

R.

Ji =
∞∑

τ=0

x̃i(τ)T · C̃T
i ·Q · C̃i · x̃i(τ) + ũi(τ)T ·R · ũi(τ) (5.2)

i = 1, 2, 3, Q = 85, R = 1

It is implied in the cost functions that the propagation from x̃i(k) to x̃i(k+ 1) follows

the dynamics of the ith linearized system. Note that Equation (5.2) aims to regulate

the outputs of of the linearized models, C̃i · x̃i. The resulting feedback control gains

in each region are given as:
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For the early ignition region (Region 1 in Fig. 4.2):

K̃1 =
[
0.0299 0.3958

]
(5.3)

For the sweet spot region (Region 2 in Fig. 4.2):

K̃2 =
[
0.0189 −0.0109

]
(5.4)

For the late ignition region (Region 3 in Fig. 4.2):

K̃3 =
[
−0.0471 −1.8632

]
(5.5)

Note the ∼ symbols on top of K signify that these are local controllers. Therefore, a

positive oxygen concentration and temperature state in Region 1 warrants a negative

input based on (5.1) and (5.3). This should be read as a higher oxygen concentration

and temperature with respect to the linearized point in Region 1 warrants a decrease

in volume at EVC.

The temperature control gains, the second entries of K̃, show a change in sign

between Region 1 and 3. In Region 3, a lower temperature with respect to the lin-

earized point results in a decrease in volume at EVC to trap less exhaust. This is due

to the negative correlation between the charge temperature and exhaust temperature

in Region 3 shown in Fig. 4.2. Since the temperature correlation is positive in Region

1, it makes sense that the temperature control gain of K̃1 reverses its sign compared

to K̃3. This suggests that a controller works well in Region 1 can have an error in its

directionality when applied to equilibria in Region 3, making the highly oscillatory

nature of late phasing HCCI even worse. The temperature gain in K̃2 is small in

magnitude. Since equilibria in Region 2 are naturally impervious to disturbance, the

feedback controller does not need to exert much effort to regulate ignition phasing.

The open- and closed-loop pole locations for the three regions are tabulated in

Table 5.1. In Table 5.1, all three open-loop systems show consistent oxygen modes

which have the pole locations around 0.5. The temperature dynamics, on the other
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Table 5.1: Pole locations of the open- and closed-loop linearized systems

Region 1 Region 2 Region 3
Open Loop 0.5980, 0.1933 0.5578, -0.0074 0.4912 , -0.6082
Closed Loop 0.6336, 0.0536 0.5864, -0.0014 0.5044, -0.0235

hand, show a sign change in the three linear models in open loop. With feedback con-

trollers, the closed-loop pole locations consistently show that the temperature modes

have been moved close to the origin across all three regions and should demonstrate

the same strong disturbance rejection characteristics as open-loop sweet spot HCCI

operation. Furthermore, the cost function shown in Equation (5.2) aims to regu-

late the outputs of the linearized models, which are weakly dependent on the oxygen

state. Therefore, the closed-loop eigenvalues of the oxygen modes are not significantly

altered compared to the open-loop eigenvalues.

5.1.2 Feed-forward Gains for Reference Tracking

In the previous section, the three local feedback controllers regulate the system output

around their respective linearized points. To enable tracking of a desired θ50 trajec-

tory, a feed-forward input is needed in addition to the feedback control. Due to the

fact that the switching linear model is composed of three linear models, three sets of

feed-forward gains can be generated with each linearization. Therefore, at each time

step, three feed-forward inputs are possible given a desired θ50. In this section, the

calculation of the three sets of feed-forward gains is first shown, then the ambiguity

of three possible feed-forward gains is removed by associating each set of gains to a

unique range of desired output.

The switching linear system described in (4.5) which reaches a desired steady-state



CHAPTER 5. CONTROL WITH A SWITCHING CONTROLLER 75

command, rss, satisfies the following equation:

xss,i = Ai · xss,i +Bi · uss,i + di

rss = Ci · xss,i + ei

i = 1, 2, 3 (5.6)

where uss,i and xss,i are the steady state input and system states associated with rss.

The feed-forward gains Nx,i and Nu,i are designed such that they satisfy the following

equations:

xss,i = Nx,i · rss
uss,i = Nu,i · rss (5.7)

Substituting Equation (5.7) into Equation (5.6) gives:

Nx,i · rss = Ai ·Nx,i · rss +Bi ·Nu,i · rss + di

rss = Ci ·Nx,i · rss + ei

i = 1, 2, 3 (5.8)

Rearranging Equation (5.8) gives the following equation:

[
I − Ai −Bi

Ci 0

]
·
[
Nx,i

Nu,i

]
=

[
di
rss

1− ei
rss

]
i = 1, 2, 3 (5.9)

Therefore, the three sets of feed-forward gains are given by:

[
Nx,i

Nu,i

]
=

[
I − Ai −Bi

Ci 0

]−1
·
[

di
rss

1− ei
rss

]
i = 1, 2, 3 (5.10)

To remove the ambiguity of three possible feed-forward gains, recall the input, ui,l,

calculated in Equation (4.11). This input drives the temperature state to the lower

temperature limit of the ith region. It is also associated with the highest steady state
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output, yi,u, in the ith region:

yi,u = Ci · (I − Ai)−1 · (Bi · ui,l + di) + ei (5.11)

Since Ci ·(I − Ai)−1 ·Bi is always negative, yi,u is indeed the highest achievable steady

state output in the ith region. At any given cycle, the feed-forward gains associated

with the ith region are chosen if the desired output is lower than yi,u but higher than

yi−1,u.

With these, the full control law that combines feedback and feed-forward is given by:

u(k) = Nu,λ · ydes(k) +Kµ · [Nx,λ · ydes(k)− x(k)] (5.12)

µ = {i : x(k) ∈ Ωi} i = 1, 2, 3 (5.13)

λ = {i : yi,u ≥ ydes ≥ yi−1,u} i = 1, 2, 3 (5.14)

5.2 Experimental Results

In this section, the switching controller (5.12) with the feedback gains shown in Equa-

tions (5.3), (5.4) and (5.5) is evaluated on an experimental engine testbed. The system

response is generally not The testbed is a 2.2 liter 4-cylinder GM Ecotech engine. The

fully flexible EHVS presented in Chapter 2 is mated with this engine to provide valve

actuation. Both the intake and exhaust valve events are 140 CAD in duration and

have a maximum lift at 4 mm. The IVC timing is fixed at 210 CAD (referenced from

recompression TDC) and the EVC timings are decided by the switching controller.

Gasoline is directly injected into each cylinder at a rate of 10 mg per cycle. The

injection timing is fixed at 40 CAD. All the experiments presented are conducted at

an engine speed of 1800 RPM with a fixed throttle position. The intake manifold

pressure is therefore dependent on valve timing but is typically around 97 kPa. Each

cylinder has a pressure sensor installed with a sampling rate of 10 kHz. The pressure

measurement is then fed to an algorithm to calculate θ50 which is a proxy of com-

bustion timing as well as the output to be controlled. The Matlab xPC platform is

used to implement the control algorithms and perform all the necessary sensing and
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Figure 5.1: Open- vs. closed-loop late phasing operation: θ50

actuation.

With this setup, the switching controller is tasked to track two steady-state θ50

commands and a reference trajectory that spans the entire operating range. Three

local Kalman filters are implemented to give state estimates in each region based on

the θ50 measurements. Note that these local estimators update a single set of shared

state estimate, instead of each having their own state estimates.

5.2.1 Late Phasing Steady-State Performance

Open loop late phasing operation shows a highly oscillatory response in Fig. 4.1

(shown again here in the top plot of Fig. 5.1 for convenience) and translates to a
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Figure 5.2: Closed-loop late phasing operation: EVC

negative real eigenvalue in the linearized model. A cycle-by-cycle feedback controller

actively changes the dynamics around the ill-behaved equilibrium as shown by the

closed-loop system poles in Table 5.1. In this experiment, the performance of the

switching controller is evaluated on the testbed at a desired θ50 of 9 CAD after TDC.

This ignition phasing is the same as the mean θ50 achieved in the top plot of Fig. 5.1.

The closed-loop response with the switching controller is shown in the middle plot of

Fig. 5.1. As can be seen, the switching controller successfully reduces the variance

of θ50. Compared to the open-loop, late-phasing experiment shown in the top plot,

the switching controller reduces the standard deviation of θ50 by a factor of 2.6 while

maintaining the same mean response.

To demonstrate the importance of capturing the change in HCCI dynamics, the

bottom plot of Fig. 5.1 shows the early phasing region controller in Equation (5.3)

tracking the same desired θ50 command. Generally, this controller does the opposite

of the switching controller in the late phasing region, as suggested by the tempera-

ture control gains in Section 5. As a result, the standard deviation of θ50 increases

slightly compared to open loop, the cylinder eventually misfires using this setup. The

corresponding control actions for the two closed-loop controllers presented in this
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Figure 5.3: Closed-loop early phasing operation: θ50

section are plotted in Fig. 5.2. Note that it takes less than a 3 CAD peak-to-peak ex-

haust valve timing movement for the switching controller to achieve the well-behaved

combustion timing response in the middle plot of Fig. 5.1.

5.2.2 Early Phasing Steady-State Performance

In this experiment, the late-phasing controller in Equation (5.5) is compared against

the switching controller. The desired θ50 in this experiment is 2 CAD after TDC,

which is an early phasing operating point. Compared to the results of the switching

controller shown in the top plot of Fig. 5.3, the late-phasing controller increases the

standard deviation of combustion timing very slightly. However, the control actions

of the two controllers shown in Fig. 5.4 suggest that the late-phasing controller uses

much more control authority. In this experiment, the standard deviation of EV C with

the late-phasing controller is 2.7 times greater than that of the switching controller.

From an LQR cost standpoint where deviations of output and large control actions

are both penalized, the switching control undoubtedly outperforms the late-phasing

controller at this operating point.
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Figure 5.4: Closed-loop early phasing operation: EVC

5.2.3 Trajectory Tracking

In this experiment, the switching controller and the early-phasing controller track a

desired θ50 trajectory indicated by the red lines in Fig. 5.5. As seen in the top plot of

Fig. 5.5, the switching controller accurately tracks the desired trajectory, and is able

to maintain a fairly small variance in θ50 throughout the experiment. In the bottom

plot of Fig. 5.5, the early-phasing controller allows more combustion timing variance

and finally does a very poor job of maintaining a constant combustion timing when

the desired θ50 reaches 9 CAD after TDC. The input trajectories associated with this

experiment are shown in Fig. 5.6.

As demonstrated in this section, the switching controller acknowledges the change

in system behavior and applies the appropriate cycle-by-cycle control. The results

show that it is able to track a wide range of desired θ50 command and improve

the variance of combustion phasing over late-phasing, open-loop operation. Slightly

different tuning of feedback controllers also show comparable results, suggesting that

the performance demonstrated in this section is not, in general, sensitive to minor

changes in the control gains.

Based on the switching linear model presented in Chapter 4, it is also possible to
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Figure 5.5: Trajectory tracking in closed-loop: blue-(actual θ50), red-(desired θ50)

synthesis a model predictive controller (MPC) as presented by Widd et al. in [62].

Particularly, this formulation allow the controller to foresee how the system dynamics

are going to change in the future and can plan the input trajectory proactively. As

a result, the MPC in [62] shows less overshoot when a large step change in θ50 is

commanded.

5.3 Stability of the Switching Linear Model

Although commonly employed in practice, it is well known that even switching be-

tween a number of stable linear systems can create instability. In this section, the

stability properties of the switching linear model is established. Furthermore, while

Equations (4.5) describe a simplified model, it is a reasonable approximation to the

testbed as shown in Fig. 4.9. Therefore, the following stability analysis can be viewed

as a preliminary investigation of global stability of the recompression HCCI.

In Section 5.3.1, the problem of finding a Lyapunov function for the switching

linear model is phrased as a semi-definite program (SDP). This shows that the model



CHAPTER 5. CONTROL WITH A SWITCHING CONTROLLER 82

0 100 200 300 400 500 600 700
635

640

645

650

655

660
Switching Controller

Cycle

E
V

C
 (

C
A

D
)

0 100 200 300 400 500 600 700
635

640

645

650

655

660
Early Phasing Controller

Cycle

E
V

C
 (

C
A

D
)

Figure 5.6: Trajectory tracking in closed-loop: EVC

is exponentially stable about the origin, i.e. about x = 0. Since the model in Equa-

tions (4.5) is fundamentally nonlinear, this stability statement does not automatically

generalize to other equilibria achieved by non-zero constant inputs. In Section 5.3.2,

another SDP formulation is demonstrated to establish general stability statements

about equilibria other than the origin.

5.3.1 Exponential Stability about the Origin

Define a quadratic Lyapunov function V :

Vk = xTk · P · xk (5.15)

where

P is a symmetric positive definite matrix

k is the cycle index
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To prove that the states of Equations (4.5) return to the origin at an exponential rate

of γ, the following dissipation rate equation needs to hold for all xk:

∆Vk = Vk − Vk+1

= xTk · P · xk − xTk+1 · P · xk+1

≥ γ · Vk
= γ · xTk · P · xk, for all xk and some γ > 0 (5.16)

Substituting the system dynamics (4.5) into Equation (5.16) assuming zero input

gives the following inequality:

xTk · P · xk − xTk · ATi · P · Ai · xk − dTi · P · di − 2 · dTi · P · Ai · xk
≥ γ · xTk · P · xk, if xk ∈ Ωi (5.17)

where Ωi is defined in Equation (4.6).

Equation (5.17) means that, at any time step k, the value of the Lyapunov function

should decrease according to (5.16). Furthermore, the propagation of xk follows one of

the three sets of linear dynamics depending on which region xk resides. Alternatively,

(5.17) can be expressed in a quadratic form:

[
xk

1

]T [
P − ATi · P · Ai − γ · P −ATi · P · di

−dTi · P · Ai −dTi · P · di

][
xk

1

]
≥ 0,

if xk ∈ Ωi, i = 1, 2, 3 (5.18)

Note that (5.18) is a set of three inequalities. However, only one of them needs to

hold at any given time step, since the state can only exist in only one of three regions

at any time step. This additional constraint is addressed in the following subsections.

Partition of State Space

The three operating regions are defined previously in Equation (4.6). These parti-

tions of the state space can be expressed in a format that is more convenient to the
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formulation. In general, the regions described in Equation (4.6) can be expressed as

follows:

xk ∈ Ωi if :
[

xk

1

]T [
0 n

nT −Ti,l

][
xk

1

]
≥ 0

and
[

xk

1

]T [
0 −n
−nT Ti,u

][
xk

1

]
≥ 0 (5.19)

where

n =
[

0 0.5
]T

With the three regions defined in (5.19), the three dissipation inequalities (5.18) can

be expressed as:

[
xk

1

]T [
P − ATi · P · Ai − γ · P −ATi · P · di

−dTi · P · Ai −dTi · P · di

][
xk

1

]
≥ 0 (5.20)

whenever
[

xk

1

]T [
0 n

nT −Ti,l

][
xk

1

]
≥ 0

[
xk

1

]T [
0 −n
−nT Ti,u

][
xk

1

]
≥ 0
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A sufficient condition for (5.20) can be obtained by replacing the 1 in the formulation

with a general variable v:

[
xk

v

]T [
P − ATi · P · Ai − γ · P −ATi · P · di

−dTi · P · Ai −dTi · P · di

][
xk

v

]
≥ 0 (5.21)

whenever
[

xk

v

]T [
0 n

nT −Ti,l

][
xk

v

]
≥ 0

[
xk

v

]T [
0 −n
−nT Ti,u

][
xk

v

]
≥ 0

Apparently, for any pair of xk = a and v = b 6= 0 that satisfy (5.21), xk = a/b satisfies

(5.20).

This means that if the states are in the ith HCCI region defined by the bottom

two inequalities of (5.21), then the dissipation rate of the Lyapunov function satisfies

the top inequality of (5.21). Furthermore, this dissipation rate is based on the linear

dynamics specific to the ith HCCI region.

The S-Procedure

A proof of the S-Procedure can be found in [63]. Essentially, the S-Procedure aims

at answering the following question:

For all z, when does zT ·Q1 · z ≥ 0 , zT ·Q2 · z ≥ 0, . . ., zT ·Qn · z ≥ 0 imply

zT ·Q0 · z ≥ 0?

where Q0, Q1, . . ., Qn are symmetric matrices.

In other words, when do the non-negativities of multiple quadratic forms imply the

non-negativity of a single quadratic form?

A sufficient condition given by the S-Procedure is the existence of non-negative scalars
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τ1, τ2, . . ., τn such that the following matrix inequality holds:

Q0 � τ1 ·Q1 + τ2 ·Q2 + . . .+ τ1 ·Qn (5.22)

Using the S-Procedure, a sufficient condition for (5.21) can be expressed as:

[
P − ATi · P · Ai − γ · P −ATi · P · di

−dTi · P · Ai −dTi · P · di

]
� τi

[
0 n

nT −Ti,l

]
+ φi

[
0 −n
−nT Ti,u

]

(5.23)

τi ≥ 0, φi ≥ 0 (5.24)

For each HCCI region, a pair of non-negative τ and φ is required to guarantee (5.21).

Note that (5.23) is affine in the variables P , τ and φ. Therefore, the problem of

simultaneously finding P , τ and φ to satisfy (5.23) can be phrased as a semi-definite

programming (SDP) problem which is a class of convex optimization problems [63].

CVX [64], a software that solves convex optimization problems in Matlab, is used to

simultaneously find P , τ and φ that satisfy the following feasibility problem for all

i = 1, 2, 3:

Find P, τi, φi (5.25)

subject to

τi ≥ 0

φi ≥ 0
[

P − ATi · P · Ai − γ · P −ATi · P · di
−dTi · P · Ai −dTi · P · di

]
� τi

[
0 n

nT −Ti,l

]
+ φi

[
0 −n
−nT Ti,u

]

The dissipation rate γ is supplied to the above SDP and can be increased until the

formulation can no longer find a P to satisfy (5.25). This formulation can be readily

generalized to discuss closed loop stability by replacing system matrices Ai with

Ai − Bi · Ki. Using this method, a P that proves exponential stability of both the
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open and closed loop system is found:

P =

[
0.4286 1.0508

1.0508 27.8916

]

The dissipation rate, γ, associated with this Lyapunov function is 0.5816.

5.3.2 General Stability Statement

Since the switching mechanism in (4.5) is fundamentally nonlinear, the stability state-

ment established around the origin is not readily generalizable to other equilibria. In

this section, this problem is addressed in a two-step process. First, the equilibrium

achieved by a steady state input is derived. In the second step, all the initial con-

ditions are shown to eventually converge to this unique equilibrium. As before, the

following analysis is easily generalized to discuss closed loop stability by replacing Ai

with Ai −Bi ·Ki in the formulation.

With the temperature thresholds for each region chosen according to (4.9) and

(4.11), a constant input uss results in an unique equilibrium, xss. Assuming this

equilibrium, xss, resides in the jth HCCI region, the following equation has to hold:

xss = Aj · xss +Bj · uss + dj xss ∈ Ωj (5.26)

Solving for xss gives:

xss = (I − Aj)−1 · (Bj · uss + dj) xss ∈ Ωj (5.27)

Define xk = xk−xss. Essentially, xk measures the deviation from the equilibrium xss.

Our goal is to find a symmetric positive definite matrix P that satisfies the following:

V k = xTk · P · xk (5.28)

∆V k = xTk · P · xk − xTk+1 · P · xk+1 ≥ xTk ·Q · xk (5.29)

where
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Q is a symmetric positive definite matrix

In other words, V k is always decreasing when x 6= 0, which shows x returns to the

origin asymptotically, or, equivalently, x returns to xss asymptotically.

The switching linear model can be expressed in terms of x in place of x:

xk+1 = Ai · xk +Bi · uk + di + (Ai − I) · xss
if xk ∈ Ωi, i = 1, 2, 3 (5.30)

Note that the region definition, Ωi, is different due to the change of coordinates from

x to x. Specifically:

Ωi ,
{
x : Six ≤ Ri

}
(5.31)

where

Ri =

[
Ti,u

−Ti,l

]
−
[

0 1

0 −1

]
· xss

=

[
T i,u

−T i,l

]

The switching thresholds for (5.30) are simply shifted by the equilibrium temperature,

given in the second element of xss. These shifted thresholds are denoted as T i,u and

T i,l. As the input is held constant at uss, x propagates from cycle to cycle according

to:

xk+1 = Ai · xk + zi if xk ∈ Ωi, i = 1, 2, 3 (5.32)

where

zi = Bi · uss + di + (Ai − I) · xss

Much like the derivation in the previous section, the dissipation of the Lyapunov
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function can be expressed in a quadratic form:

[
xk

1

]T [
P − ATi · P · Ai −Q −ATi · P · zi
−zTi · P · Ai −zTi · P · zi

][
xk

1

]
≥ 0, if xk ∈ Ωi

(5.33)

Note the similarity between (5.33) and (5.18). Not surprisingly, proving stability for

the equilibrium, xss, ultimately reduces to a formulation very similar to (5.25):

Find P, τi, φi (5.34)

τi ≥ 0

φi ≥ 0
[

P − ATi · P · Ai −Q −ATi · P · zi
−zTi · P · Ai −zTi · P · zi

]
� τi

[
0 n

nT −T i,l

]
+ φi

[
0 −n
−nT T i,u

]

However, finding a P for (5.34) only proves that x asymptotically converges to xss,

which is a single equilibrium in the vast set of possible equilibria. In the remaining of

this section, (5.34) is generalized such that a single P can prove a range of equilibria

are asymptotically stable.

The last LMI in (5.34) can be re-written as:

[
P − ATi PAi −Q −ATi Pzi − τin+ φin

−zTi PAi − τinT + φin
T −zTi Pzi + τiTi, l − φiTi, u

]
� 0 (5.35)

A necessary and sufficient condition for (5.35) is:




P −Q −τi · n+ φi · n ATi

−τi · nT + φi · nT τi · Ti, l − φi · Ti, u zTi

A zi P−1


 � 0 (5.36)

P−1 � 0 (5.37)
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This is because (5.36) is positive semi-definite if and only if its Schur complement,

χ, is positive semi-definite and P−1 is positive definite. The Schur complement χ is

given as:

χ =

[
P −Q −τi · n+ φi · n

−τi · nT + φi · nT τi · Ti, l − φi · Ti, u

]
−
[
ATi

zTi

]
· P ·

[
Ai zi

]

=

[
P −Q −τi · n+ φi · n

−τi · nT + φi · nT τi · Ti, l − φi · Ti, u

]
−
[
ATi · P · Ai ATi · P · zi
zTi · P · Ai zTi · P · zi

]

=

[
P − ATi PAi −Q −ATi Pzi − τin+ φin

−zTi PAi − τinT + φin
T −zTi Pzi + τiTi, l − φiTi, u

]
(5.38)

In the last line of (5.38), the Schur complement of the block matrix in (5.36) reduces

to the block matrix in (5.35). Therefore, conditions (5.36) and (5.37) are indeed

necessary and sufficient conditions for (5.35). Note that condition (5.37) is guaranteed

automatically, since P is the Lyapunov function to be found which is positive definite.

Condition (5.36) is no longer affine in P due to the existence of P−1. Therefore, the

problem cannot be readily phrased as a SDP. Defining a block diagonal matrix F :

F =



I 0 0

0 I 0

0 0 P


 (5.39)

Multiplying (5.36) left and right by F does not change its definiteness. As a result,

an equivalent condition for (5.36) is:




P −Q −τi · n+ φi · n ATi · P
−τi · nT + φi · nT τi · Ti, l − φi · Ti, u zTi · P

P · A P · zi P


 � 0 (5.40)

The key difference between (5.40) and (5.35) is that the former is affine in zi, while



CHAPTER 5. CONTROL WITH A SWITCHING CONTROLLER 91

the latter is quadratic in zi. Furthermore, zi is affine in uss:

zi =Bi · uss + di + (Ai − I) · xss
=Bi · uss + di + (Ai − I) · (I − Aj)−1 · (Bj · uss + dj)

=
[
Bi + (Ai − I) · (I − Aj)−1 ·Bj

]
· uss + di +

[
(Ai − I) · (I − Aj)−1

]
· dj

Therefore, (5.40) is affine in uss. Using the results in [65], if there exists a set of

P , τ and φ that simultaneously satisfy (5.40) for two steady state inputs uss,1 and

uss,2, then all the intermediate points between uss,1 and uss,2 are guaranteed to satisfy

(5.40) for the same P , τ and φ. As a result, for the jth HCCI region, a pair of uss,1

and uss,2 can be supplied to solve the following SDP:

Find P, τ, φ (5.41)

τi ≥ 0

φi ≥ 0



P −Q −τi · n+ φi · n ATi · P
−τi · nT + φi · nT τi · Ti, l − φi · Ti, u zTi · P

P · A P · zi P


 � 0




P −Q −τi · n+ φi · n ATi · P
−τi · nT + φi · nT τi · Ti, l − φi · Ti, u wTi · P

P · A P · wi P


 � 0

zi =
[
Bi + (Ai − I) · (I − Aj)−1 ·Bj

]
· uss,1 + di +

[
(Ai − I) · (I − Aj)−1

]
· dj

wi =
[
Bi + (Ai − I) · (I − Aj)−1 ·Bj

]
· uss,2 + di +

[
(Ai − I) · (I − Aj)−1

]
· dj

With this formulation, a Lyapunov function P found by the solver is paired with an

interval of steady state inputs. Any equilibria achieved by the steady inputs within

this interval are proven globally, asymptotically stable.
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5.4 Conclusion

In this chapter, the three-region switching controller is shown to track a wide range

of desired θ50 commands while maintaining a small variance in combustion timing.

Particularly, the ill-behaved late phasing operating point shown in the bottom plot

of Fig. 4.1 is rendered usable with appropriate cycle-by-cycle feedback. Essentially,

the permissible operating range of recompression HCCI is expanded in closed loop.

The effectiveness of this controller is based on the switching linear model presented

in Chapter 4, which captures the qualitative change in system dynamics.

In the last part of this chapter, two SDP formulations are presented to guarantee

that the switching control/model framework is stable. Since the three-region switch-

ing linear model is a reasonable approximation of the engine testbed, the stability

analysis also provides a preliminary investigation of stability of recompression HCCI.



Chapter 6

The Linear Parameter Varying

Model

In Chapter 5, the switching controller is proved stable with the switching linear

model. It is desirable to further examine the stability of this controller when paired

with the nonlinear model, which has richer dynamics compared to the switching linear

model and more accurately reflects the physical system. Apart from the closed-loop

behavior, it is also of interest to understand the fundamental stability and robustness

characteristics of recompression HCCI.

Qualitatively, stability analysis aims to make collective statements about the

boundedness of state trajectories without explicitly calculating every possible tra-

jectory. Using this notion, robustness analysis aims to make this type of collective

statement in the presence of model uncertainty and disturbance. However, this is not

always easy with nonlinear systems, especially when the model complexity increases.

While the nonlinear model is relatively simple among HCCI models, its algebraic com-

plexity still poses a challenge in analyzing its state trajectory collectively. To address

this, this chapter first examines the nonlinear model in greater detail and reveals an

inherent structure in its state propagation equations (3.19). This insight suggests the

possibility of approximating the NL model with a linear parameter varying (LPV)

93
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model, which has the following general from:

x(k + 1) = A(ρ) · x(k) +B(ρ) · u(k) (6.1)

y(k) = C(ρ) · x(k) (6.2)

where ρ is a vector of varying parameters.

Essentially, both the oxygen and temperature state of the NL are first propagated

by two fundamentally nonlinear equations, followed by two “linear-like” equations.

As a result, the major nonlinearity of the NL model can be lumped into two varying

parameters. By using a set of linear equations to approximate the “linear-like” stages

of the NL model, a LPV model that has a similar format to Equation (6.1) can

be obtained. This LPV model is evaluated in various simulations and shows very

close agreement to the NL model in all cases, making it essentially equivalent to the

nonlinear model.

In addition to its elegant structure, the LPV model presented in this chapter

exhibits two important features. Firstly, one of the varying parameters is a “bowl-

shaped” function of the states, or, in mathematical terms, a convex function of the

model states. Without ever knowing its function value, a convex function embeds a

number of properties in its graph. As a result, Chapter 7 presents an approach to

collectively bound the state trajectories of the LPV model by exploiting the properties

of convex functions. Secondly, the system matrices of the LPV model are affinely

dependent on the other varying parameter, which is of known range and corresponds

to a bounded model uncertainty. Chapter 7 further takes advantage of this property

to make statements about the state trajectories in the presence of model uncertainty

through checking a finite number of corner conditions.

6.1 What is Nonlinear about the Nonlinear Model?

The graphical analysis presented in Chapter 4 actually shows evidence of linearity

in the breathing stage of the NL model. The map shown in Fig. 4.4 appears to be

a family of evenly-spaced parallel lines. This suggests that part of the temperature
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Figure 6.1: Temperature propagation during the combustion stage

propagation equation (3.19), g, is actually quite linear within the range of the variable

values of interest.

To further expose the underlying structure of the nonlinear model, the tempera-

ture state propagation equation in (3.19) is again broken into two stages at the engine

position of 300 CAD and 420 CAD. The characteristics of the two stages are examined

without any of the simplifications used in Chapter 4.

6.1.1 Temperature Propagation: The Combustion Stage

The temperature propagation during the combustion stage, from 300 CAD to 420

CAD, is given as follows:

T420(k) =Tθs(k) · V κ1−1
θs

· Vign(k)κ2−κ1 · Veoc(k)κ3−κ2 · V 1−κ3
420

+
E · nfθs(k) ·R · Veoc(k)κ3−1 · V 1−κ3

420 · Tθs(k)

R · Tθs(k) · (Cv,f − Cv) · nfθs + Cv · pθs · Vθs
(6.3)
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The first term on the right-hand-side (RHS) of Equation (6.3) is the temperature at

420 CAD in the absence of a combustion event, and the state temperature is simply

propagated by a series of polytropic proceses to reach 420 CAD. The second term

on the RHS is the contribution from the instantaneous energy addition at the end

of combustion. Note that Vign and Veoc are both functions of the ignition timing,

which, in turn, is an implicit function of both the oxygen content and temperature

state based on the Arrhenius model (3.2). Nevertheless, it is convenient to assume

that there exists an explicit function, gcomb, summarizing the relationship between

the exhaust temperature and the model states:

T420(k) = gcomb
(
Tθs(k), nO2

θs
(k)
)

(6.4)

This function, gcomb, greatly reduces the complexity of notations in this thesis. The

temperature propagation during the combustion stage can be graphed within a range

of state values of interest as shown in Fig. 6.1. The oxygen content state is divided

by the cylinder volume at the state definition point, 300 CAD, and is plotted as an

intensive property. The same normalization is used whenever the number of moles of

gas is plotted in this thesis. The graph of gcomb shows that the exhaust temperature is

much more sensitive to change in the temperature state than oxygen state, agreeing

with the assumptions used in Chapter 4. The same “bowl-shaped” characteristics

emerge in this 2-D map. The 1-D combustion map shown in Fig. 4.2 is a steady-state

projection of Fig. 6.1.

This bowl-shaped feature is further characterized as the convexity of gcomb in

Chapter 7. Qualitatively, gcomb being a convex function enforces certain trends in its

mapping without knowing exactly what the function value is. This is very useful in

Chapter 7 to make collective statements about the state trajectories.
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Figure 6.2: A 2-D slice of the temperature propagation during the breathing stage

6.1.2 Temperature Propagation: The Breathing Stage

The temperature propagation during the breathing stage, is given as follows:

Tθs(k + 1) =
pim · Vivcκ7 · Vθs1−κ7
R ·
[
nivo(k) + nind(k)

] (6.5)

where

nivo(k) =pem
1
κ4 · V

1−κ3
κ4

420 ·R
−1
κ4 · T420(k)

−1
κ4 · nθs(k)

κ4−1
κ4 · Vevc(k) · Vevo(k)

κ3−κ4
κ4 (6.6)

nind(k) =
Cv

Cp ·R · T im
[
pim · Vivc − pem · Vevc(k)− h ·R · Twall

Cv

+
h

2 · Cv
R

1
κ4 · pem

κ4−1
κ4 · V

κ3−1
κ4

420 · nθs(k)
1−κ4
κ4 · T420(k)

1
κ4

(
1 + (

Vevc(k)

V tdc
)γ−1

)
Vevo(k)

κ4−κ3
κ4

]

(6.7)

As can be seen, the temperature state on cycle k + 1 is a function of the exhaust

temperature T420(k), exhaust valve timing Vevc(k) and the total amount of gas at the
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state definition point nθs(k). Note that nθs(k) can be further related to Tθs(k) based

on the ideal gas law and the assumption that the pressure at the state definition point

is fixed at pim ·
(
Vivc
Vθs

)κ7
, i.e. the intake manifold pressure propagated by a polytropic

compression. Therefore, the temperature propagation during the breathing stage can

be expressed compactly as:

Tθs(k + 1) = gbreath
(
Tθs(k), T420(k), Vevc(k)

)
(6.8)

This function, gbreath, is much more sensitive to change in T420(k) and Vevc(k) than

Tθs(k). Therefore, a 2-D slice of gbreath with T420(k) on the x-axis and Vevc(k) on the

y-axis is shown in Fig. 6.2. As can be seen, the breathing stage is indeed very linear

in these two variables over a wide range of Vevc and T420. Note that the Vevc range

translates to EVC change of 17 CAD and the range of T420 in Fig. 6.2 covers the

range of z-axis shown in Fig. 6.1. Different Tθs generate surfaces that are roughly

parallel to the one shown in Fig. 6.2. Qualitatively, the linear-like behavior shown

in Fig. 6.2 comes from the roughly linear nature in the energy balance during the

mixing process.

In the temperature propagation equation of the NL model (3.19), g, a clear linear-

nonlinear separation can be observed, with the major nonlinearity of the nonlinear

model existing in the combustion stage. The full-cycle propagation equation, g, can

be formed by combining gcomb and gbreath:

Tθs(k + 1) = g(nO2
θs

(k), Tθs(k), VEV C(k))

= gbreath

(
Tθs(k), gcomb

(
Tθs(k), nO2

θs
(k)
)
, Vevc(k)

)

6.1.3 Oxygen Content Propagation

Similar separation can be achieved with oxygen propagation equation. The full cycle

equation for oxygen content is:

nO2
θs

(k + 1) =
(
nO2
θs

(k)− λstoich · nfθs
)
· ζ + χ · nind(k) (6.9)
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Figure 6.3: A 2-D slice of the inducted air as a function of Vevc and T420

where

λstoich is the stoichiometric air-fuel ratio

ζ is the trapped ratio: the percentage of the amount exhaust trapped at EVC

nind is the amount of air inducted and is given in Equation (6.7) as a function of

Tθs , Vevc and T420

χ is the oxygen molar ratio in air

The term in the parenthesis on the RHS of equation (6.9) is the amount of leftover

oxygen after combustion. When this amount is further multiplied by the trap ratio,

the term represents the oxygen content at EVC. Therefore, the total oxygen amount

on the next cycle is the sum of the oxygen content at EVC and the oxygen content

inducted during the intake stroke.

It turns out that the amount of air inducted nind, is roughly linear in Tθs , Vevc and

T420 as well. A 2-D slice of Equation (6.7) is shown in Fig. 6.3. On the other hand,

the first term in Equation (6.9) is a product of nO2
θs

and ζ. Since the trap ratio, ζ,
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is a strong function of the EVC command, this represents the major nonlinearity in

the oxygen propagation equation, i.e. a product of the state and the input, which is

inherent to recompression HCCI due to the retained exhaust.

6.2 The Linear Parameter Varying HCCI Model

In the previous section, the nonlinear model exhibits a clear “linear-nonlinear” separa-

tion in both the oxygen content and temperature propagation equations. Particularly,

each of the two states is first propagated by a nonlinear equation, the output of that

nonlinear equation is then propagated by a “linear-like” equation to the state defi-

nition point on the next engine cycle. With this insight, a linear parameter varying

(LPV) model can be formulated based on the nonlinear model. The first step in

arriving at this model structure is to approximate the breathing stage equations with

their linearizations. Specifically:

Tθs(k + 1) u C1 + C2 · Tθs(k) + C3 · T420(k) + C4 · Vevc(k) (6.10)

nind(k) u C5 + C6 · Tθs(k) + C7 · T420(k) + C8 · Vevc(k) (6.11)

where

C1 is the equilibrium temperature state of the linearized point

C2 ∼ C4 are the elements of the gradient of Equation (6.8) at the linearized point

C5 is the equilibrium inducted air of the linearized point

C6 ∼ C8 are the elements of the gradient of Equation (6.7) at the linearized point

Substituting Equation (6.11) into Equation (6.9) gives:

nO2
θs

(k + 1) =
(
nO2
θs

(k)− λstoich · nfθs
)
· ζ

+ χ · C5 + χ · C6 · Tθs(k) + χ · C7 · T420(k) + χ · C8 · Vevc(k)
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With this, a linear parameter varying model is formed:

[
nO2(k + 1)

Tθs(k + 1)

]
=

[
ζ(k) χ · C6

0 C2

]
·
[

nO2(k)

Tθs(k)

]
+

[
χ · C7

C3

]
· T420(k)

+

[
χ · C8

C4

]
· Vevc(k) +

[
χ · C5 − ζ(k) · λstoich · nfθs

C1

]
(6.12)

The trap ratio, ζ, and the exhaust temperature, T420, are the varying parameters

in this model. The output equation of this LPV model remains the same as the

nonlinear model, that is

θ50(k) = θign(k) + 0.5 · θdurn

where

θign =

{
θτ

∣∣∣Kth =

∫ θτ

θs

A · e
−Ea
R·Tθ · [nO2

θs
]a · [nfθs ]b ·

1

ω
dθ

}

Introducing the following notations:

A(ζ) =

[
0 χ · C6

0 C2

]
+ ζ ·

[
1 0

0 0

]

B1 =

[
χ · C8

C4

]

B2 =

[
χ · C7

C3

]

d(ζ) =

[
χ · C5

C1

]
+ ζ ·

[
−λstoich · nfθs

0

]

x =

[
nO2
θs

Tθs

]

u = Vevc (6.13)
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Equation (6.12) can therefore be expressed compactly as:

xk+1 = A(ζ) · xk +B1 · uk +B2 · T420,k + d(ζ) (6.14)

The model shown in Equation (6.14) does not exactly fit the general LPV definition

shown in (6.1) due to the existence of the bias term d + B2 · T420. However, based

on the obvious resemblance in model structure, the HCCI model shown in (6.14) is

still referred to as the LPV model in this thesis. Note that in (6.14), the A matrix is

only a function of the trap ratio, whereas the bias in the equation depends on both

varying parameters, i.e. the trap ratio and the exhaust temperature.

One important feature of (6.14) is that every system matrix is affinely dependent

on the trap ratio, ζ. In addition, the trap ratio is typically bounded in the interval

of [0.5 0.6] for recompression HCCI, i.e., 50∼60% of the exhaust is trapped in the

cylinder. Therefore, any ζ in this range can be expressed as the convex combination

of the two extremes of the interval, i.e.

ζ =
2∑

i=1

θi · ζ i,
2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2

ζ1 = 0.5, ζ2 = 0.6

Using the A matrix as an example, any allowable A(ζ) can be therefore expressed as:

A(ζ) = A
( 2∑

i=1

θi · ζ i
)
,

2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2

=
2∑

i=1

θi · A
(
ζ i
)
,

2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2

Essentially, the above means that any allowable A(ζ) can be expressed as the convex

combination of the two A matrices evaluated at the two extremes of ζ. This is very

useful in Chapter 7 to show that even when the system states are propagated by

an infinite number of possible system matrices due to the bounded uncertainty in

the trap ratio, collective statements about the state trajectories can still be made by
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checking a finite number of corner conditions.

6.3 Model Validation

In this section, the LPV model is subjected to various input and environmental pa-

rameter trajectories to show that it is essentially equivalent to the nonlinear model.

6.3.1 Sequence of Step Changes in EVC

Assuming the trap ratio, ζ, and the exhaust temperature, T420, are known, the state

trajectories of the LPV model are compared to those of the nonlinear model when

subjected to the same step changes in EVC. The results are shown in Fig. 6.4 and

Fig. 6.5.

In this particular test, the maximum error in the oxygen content is 4.01 × 10−6

kmol/m3 and is three orders of magnitude smaller than the mean oxygen content

shown in Fig. 6.4. This level of accurate agreement in the oxygen state is seen in

all other numerical examples presented in this chapter. Therefore, the amount of

inducted air, nind, is indeed very linear in Tθs , T420 and Vevc as proposed in Equation

(6.11).

On the other hand, the temperature trajectory in Fig. 6.5 shows larger discrepancy

compared to the oxygen trajectory but the two models still agree with each other well

in transients and in steady state. In this particular test, the maximum error in the

temperature is 0.49 Kelvin and the RMS error in the entire sequence is 0.29 Kelvin.

The θ50 response of the two models and the EVC trajectory used in this test is

shown in Fig. 6.6 and in Fig. 6.7, respectively. The maximum difference in θ50 in

this particular test is 0.29 CAD which is good across a range of maximum variation

of roughly 10 CAD as shown in Fig. 6.6.
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6.3.2 Random EVC Trajectory

In this section, a uniformly distributed EVC trajectory of 10000 cycle length is gen-

erated to drive the LPV and the nonlinear model. The lower and upper limits of

the EVC command are 640 and 654 CAD, respectively. The resulting histograms

of error in the oxygen content, temperature and θ50 of the two models are shown in

Fig. 6.8, Fig. 6.9 an Fig. 6.10 (error is calculated as the values of the LPV minus

those of the NL). All error in the oxygen state shown in Fig. 6.8 is three orders of

magnitude smaller than the mean values of the two models and is, therefore, incon-

sequential. Even with this more dynamic EVC trajectory, the majority of the error

in the temperature state is within a range of ± 0.5 Kelvin as shown in Fig. 6.9. The

maximum error in temperature is roughly 0.8 Kelvin and occurs very infrequently. In

Fig. 6.10, the difference in θ50 is small as well. The majority of the error is within

a range of ± 0.25 CAD. The histogram of error in the temperature state, Fig. 6.9,

shows a negative bias, indicating that the LPV model is more likely to underestimate

the temperature state. As a result, the histogram of error in θ50, Fig. 6.10, shows

a positive bias, since underestimating the temperature state leads to overestimating

θ50 in the LPV model.
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6.3.3 EVC and Environmental Parameter Variation Trajec-

tories

The nonlinear model is a physics-based model which readily captures the effect of

varying environmental parameters on the two states. This feature is particularly de-

sirable if one wants to understand the robustness characteristics of HCCI, i.e. how

variations in environmental parameters such as intake manifold pressure, cylinder

wall temperature, etc. influence the boundedness of the model states. However, these

physical links present in the nonlinear models become less obvious in the LPV model

when the breathing stage is linearized about an operating point. As a platform for

robustness analysis, it is desirable to recover these links in the LPV model. One

intuitive method is to update the linearizations with the environmental parameters

experienced by the engine in a given cycle. In other words, the elements of the

gradients, C1 ∼ C8, shown in Equations (6.10) and (6.11) are functions of the envi-

ronmental parameters and are updated on a cycle-by-cycle basis. In this section, the

EVC, intake manifold pressure, intake air temperature and cylinder wall temperature

are simultaneously varied as shown in Fig. 6.11. The resulting state and output
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trajectories are plotted in Fig. 6.12, Fig. 6.13 and Fig. 6.14. As can be seen, the

responses of the LPV model agree well with those of the nonlinear model both in

transients and in steady state. By updating the linearizations as functions of the

environmental parameters, the LPV model can capture the effect of these parameters

just as the physics-based nonlinear model. Similar to the observations in Section

6.3.2, the LPV model generally underestimates the temperature state in Fig. 6.13

and, consequently, overestimates θ50 in Fig. 6.14. Note that the responses shown here

are intended to show the agreement between the two models. Further experimental

studies are needed to verify these effects are quantitatively correct when compared to

the testbed responses.

Since C1 ∼ C8 are not generally affine functions of these environmental parame-

ters, the useful format of system matrices being affinely dependent on varying param-

eters is lost. However, it should be possible to examine how a bounded change in an

environmental parameter affects the ranges of Ci. For example, assuming the intake

pressure is allowed to vary between a range of ± 5 kPa, and this variation further

translates to a ± 0.2 change in C2 only. Then an additional varying parameter, ηC2 ,

can be introduced and bounded to be −0.2 ≤ ηC2 ≤ 0.2. The A matrix shown in

Equation (6.13) can be re-written as being affinely dependent on both the trap ratio,

ζ, and ηC2 , i.e.,

A(ζ, ηC2) =

[
0 χ · C6

0 C2

]
+ ζ ·

[
1 0

0 0

]
+ ηC2 ·

[
0 0

0 1

]
(6.15)
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Figure 6.11: EVC and environmental parameter trajectories
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6.3.4 Comparison with the Testbed

In this last test, the LPV model, the nonlinear model and the engine testbed are

subjected to the same randomly generated EVC trajectory. The θ50 responses of the

two models and testbeds are plotted in Fig. 6.15. For this test, the RMS error in

θ50 between the LPV model and the testbed is 1.390 CAD. The RMS error between

the nonlinear model and the testbed is essentially the same at 1.388 CAD. The two

models indeed yield very similar error when compared to the testbed. In fact, when

the same EVC trajectory was tested in a different test run, the LPV model gives

slightly lower RMS error at 1.356 CAD when compared to that of the nonlinear

model at 1.361 CAD. To argue either the LPV model or the nonlinear model is a

better approximation to the testbed is pointless, because the day-to-day variation of

the testbed is far greater than the difference between the models. Therefore, it is

reasonable to assume that basing the stability and robustness analysis on the LPV

is, for all practical intents and purposes, equivalent to using the nonlinear model.
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Figure 6.15: θ50 trajectory: LPV vs. NL vs. test bed (data set 1)
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6.4 Conclusion

In this chapter, a linear parameter varying model is formulated with the explicit aim

of providing a tractable platform for stability and robustness analysis. The elegant

structure of the LPV model shown in Equation (6.14) is the result of understanding

the dominant nonlinearity present in the nonlinear model developed by Ravi et al..

Roughly speaking, the nonlinearity in the temperature propagation equation exists in

the combustion stage. This nonlinearity can be lumped into the exhaust temperature,

T420, and propagated by a linear breathing stage to the state definition point on the

next engine cycle. A similar “linear-nonlinear” separation is shown in the oxygen con-

tent equation. The proposed LPV model is evaluated in various simulation scenarios

and shows close agreement to the nonlinear model in all cases. Furthermore, the links

between the environmental parameters and the system states readily available in the

nonlinear model can be captured in the LPV model through updating the breathing

stage linearizations as functions of these parameters. Finally, comparisons between

the testbed and the two models demonstrate that the LPV and NL models can give



CHAPTER 6. THE LINEAR PARAMETER VARYING MODEL 114

equivalent insights into HCCI stability and robustness. Of course, the LPV presents

an elegant structure which is more amenable for stability and robustness analysis.



Chapter 7

Stability and Robustness Analysis

of HCCI

In this chapter, a stability algorithm is presented to make collective statements on the

boundedness of the state trajectories of the LPV model, shown below for convenience:

xk+1 = A(ζ) · xk +B1 · uk +B2 · T420,k + d(ζ)

A brief description of this algorithm’s objective and the type of conclusion it makes is

first given below. The mathematical background of this algorithm is presented later

in the chapter. Specifically, the problem statement of this stability algorithm is as

follows:

Problem statement: Stability algorithm

Given a bounded set, Φk. Find another bounded set, Φk+1, such that all xk+1 ∈ Φk+1

for any xk ∈ Φk.

The above problem can be sovled recursively to find bounded sets for each cycle.

Essentially, an initial bounded set, Φ0, is first specified, the algorithm then finds a Φ1

that houses all x1, for any x0 ∈ Φ0. Next, assuming x1 can originate anywhere in Φ1,

the algorithm finds a Φ2 that houses all x2, and the recursion can go on indefinitely.

115
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Figure 7.1: Stability analysis: bounded sets for cycle 0 ∼ 7
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An example of the bounded sets generated by this algorithm with a constant EVC

is shown in Fig. 7.1. In the first subplot (cycle 0), the parallelogram represents the

initial bounded set, Φ0, and is shown in every subplot in Fig. 7.1 as a reference. Each

of the subplots shows another parallelogram, representing the bounded set on each

cycle. As can be seen, every state trajectory originates from the initial bounded set

quickly converges to the very small bounded set shown in the bottom right subplot

in 7 cycles. An immediate question arises: How are the state trajectories bounded

beyond cycle 7? The stability algorithm answers this question with the concept of

an invariant set. Essentially, if the bounded set, Φk+1, is enclosed by the bounded

set on the previous cycle, Φk, then Φk+1 is an invariant set. This is proven later in

the chapter, but an intuitive way to see this is by examining the bounded sets on

two consecutive cycles as shown in Fig. 7.2. In this figure, Φk+1 is a subset of Φk (or

enclosed by Φk). Therefore any trajectory that enters Φk+1 is in Φk as well. Since

any trajectory that enters Φk is going to enter Φk+1 on the next cycle, it follows that

any trajectory that enters Φk+1 can never leave.

This invariant-set concept is central to the stability algorithm, since it can con-

clude the boundedness of the state trajectories for all cycles by running a finite

number of recursions. Every bounded set shown in Fig. 7.1 is actually enclosed by

the bounded set on the previous cycle, as a result, every one of them is an invariant

set. Thus, it can be concluded that the state trajectories beyond cycle 7 never leave

the bounded (invariant) set shown in the last subplot, which has a very small size.

Since engine operation is always perturbed by some level of disturbance, it is incon-

sequential to require the state trajectories converging to a single equilibrium. With

a generalized definition of Lyapunov stability as presented by Ye et al. and Jiang et

al. [66, 67], where stability is defined with respect to an invariant set, asymptotic

stability with respect to the smallest invariant set in Fig. 7.1 can be concluded based

on these sequential invariant sets. In this analysis, the varying parameter, T420,k, is

determined by the combustion temperature map, gcomb, which is a convex function of

the states. This property is crucial in the formulation of this algorithm. Qualitatively,

gcomb being convex means that the state trajectories originating from a polytope can

be collectively and efficiently computed. The other varying parameter, the trap ratio,
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Figure 7.2: Bounded sets on two consecutive cycles

ζ, is assumed constant. This is reasonable during open-loop, steady-state operation,

since ζ is predominantly influenced by EVC. Later in the chapter, ζ is allowed to vary

in an interval when the stability algorithm is generalized to include model uncertainty.

To derive this recursive algorithm, some knowledge of convex sets and functions

is required and it is briefly summarized in Section 7.1. In Section 7.2, the recursive

stability algorithm is formulated. Using this algorithm, an additional example is

presented to compare the boundedness of the state trajectories in open- and closed-

loop late phasing operation. In the second half of this chapter, this algorithm is

generalized to include bounded uncertainties in the system matrices A, B1, B2 and

d, and in the combustion temperature map gcomb. Particularly, the effect of varying

trap ratio can be discussed with this generalized robustness algorithm.

7.1 Some Definitions and Properties

The derivation of the stability algorithm requires the knowledge of the following

definitions and properties of convex sets and functions. These are excerpted from the
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Figure 7.3: A polyhedron in R2

convex optimization textbook by Boyd [63] and have direct relevance to this thesis.

The variables shown in this section are strictly for presenting these mathematical

concepts and should not be confused with variables outside this section that share

the same name.

7.1.1 Convex Sets

Definition

A set, S, is convex if the line segment between any two points in S lies in S, i.e., if

for any x1 and x2 ∈ S, and any θ with 0 ≤ θ ≤ 1:

θ · x1 + (1− θ) · x2 ∈ S (7.1)

The LHS of the above is the convex combination of the two points, x1 and x2, which

is the line segment between these two points.

The convex sets used in this thesis are briefly described as follows.
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Example 1: Hyperplane

A hyperplane is a set of points defined by a linear equality. Therefore, a hyperplane,

V , is:

V =
{
x
∣∣∣aT · x = b

}
(7.2)

A hyperplane is a line in R2. In R3, a hyperplane is actually a plane.

Example 2: Polyhedron

A polyhedron is a set of points defined by a finite number of linear equalities and

inequalities. Therefore, a polyhedron, W , is:

W =
{
x
∣∣∣aiT · x ≤ bi, i = 1, ...,m, cj

T · x = dj, j = 1, ..., n
}

(7.3)

An example in R2 is given in Fig. 7.3. This particular polyhedron shown is defined by

three linear inequalities and is the blue shaded region in the figure. This is obviously

a convex set, since the line segment between any two points in the shaded area always

lies in the shaded area. When a polyhedron is further bounded, it is referred to as a

polytope. In this thesis, the polyhedra presented are actually all polytopes.

Alternatively, the polyhedron (polytope) shown in Fig. 7.3 can be expressed as

the set of points that are the convex combination of the three vertices, xvtxi :

W =

{
x
∣∣∣x =

∑

i

θi · xvtxi ,
∑

i

θi = 1, θi ≥ 0, i = 1, 2, 3

}
(7.4)

7.1.2 Convex and Concave Functions

In this section, the definition and various properties of convex and concave functions

are explained. As will be presented, convex and concave functions share a lot of

similar properties.
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f (x1)

f (x2)

Figure 7.4: An example of a 1-D convex function

Definition

A function, f , is convex if its domain is convex and if for all x1, x2 ∈ domf and θ

with 0 ≤ θ ≤ 1, the following inequality holds:

f (θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) (7.5)

Geometrically, (7.5) means that when a convex function is restricted within a line

segment, the chord of the convex function is always above its graph. An example 1-D

convex function is given in Fig. 7.4.

On the other hand, a function, f , is concave if −f is a convex function. Therefore,

a linear (or affine) function is both convex and concave.

Property 1: First-order condition

If a function, f , is differentiable (i.e., Of exists every point in domf), then f is

convex if and only if

f (x) ≥ f (x1) + Of(x1)
T · (x− x1) (7.6)
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x1

f (x1)

Figure 7.5: First-order condition for a differentiable 1-D convex function

Geometrically, this simply means that the linearization of a convex function is a global

under-estimator of the convex function. A 1-D example of this first-order property

is given in Fig. 7.5. As can be seen, the linearization shown in black is under the

convex function shown in red in Fig. 7.5.

Property 2: Subgradients and convex function

If a function, f : Rn → R, is convex then there exists a non-vertical supporting

hyperplane to epif (the epigraph of f) at every point along the graph of the function.

The epigraph of f is defined as:

epif =
{

(x, t)
∣∣ x ∈ domf, f(x) ≤ t

}
(7.7)

This means that for all xi ∈ dom f there exists a supporting hyperplane to epif

defined by gi that satisfies the following:

f(x) ≥ f(xi) + gTi · (x− xi) (7.8)

gi are called the subgradients of the function. Note that, if f is differentiable, then the
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Figure 7.6: Supporting hyperplanes to the epigraph of a 1-D convex function

gradient Of(xi) = gi is a natural choice as a subgradient. Equation (7.8) is illustrated

in Fig. 7.6. As can be seen, at each point on the convex function’s graph, there exists

a supporting hyperplane shown in black to the function’s epigraph. Any of these

hyperplanes is a global under-estimator of the convex function as can be interpreted

in (7.8) and observed in Fig. 7.6. It is also obvious that the point-wise maximum of

these hyperplanes is a global under-estimator of the convex function:

f(x) ≥ max
i

{
f(xi) + gTi · (x− xi)

}
(7.9)

The point-wise maximum of these hyperplanes shown in Fig. 7.6 is further traced out

as the solid black line in Fig. 7.7. The subgradients and the supporting hyperplanes

they define are useful in examining a function’s convexity when the function is only

known at a number of sample points. For example, if samples from a 1-D function

are given as shown in the left plot in Fig. 7.8. Then a necessary condition for the

function being convex is that, at each sample point, a line can be found to lie under

all other sample points as shown in the right figure in Fig. 7.8.
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Figure 7.7: Point-wise maximum of the hyperplanes for a 1-D convex function

Property 3: Function value over a line segment

When a convex function is restricted within a line segment in its domain, then the

function value cannot exceed the values at the two end points of the line segment.

This property comes directly from the definition. If a convex function is restricted

within a line segment defined by two end points x1 and x2, then according to the

definition of a convex function:

f (θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) for 0 ≤ θ ≤ 1

Furthermore, the weighted average of two values cannot exceed the higher of the two:

θf(x1) + (1− θ)f(x2) ≤ max
i=1,2
{f(xi)} for 0 ≤ θ ≤ 1

Therefore, the end result is:

f (θx1 + (1− θ)x2) ≤ max
i=1,2
{f(xi)} for 0 ≤ θ ≤ 1

A 1-D illustration of this property is shown in Fig. 7.9. This property can be further
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Figure 7.8: Convexity test based on function value samples

generalized to discuss the maximum function value for a convex function over a poly-

tope. For example, f is a 2-D convex function and is restricted in its domain within

the polytope shown in Fig. 7.3. It follows that the maximum function value of f over

this polytope always occurs at one of the three vertices, i.e.,

max
i

{
f(xvtxi )

}
≥ f(x), ∀x ∈ W, i = 1, 2, 3

W =

{
x
∣∣∣ x =

∑

i

θi · xvtxi ,
∑

i

θi = 1, θi ≥ 0, i = 1, 2, 3

}

This can be proven rigorously, but a quick way to visualize is by first picking an

arbitrary point in the polyhedron as shown by the red circle in Fig. 7.10. Next, draw

an arbitrary line segment passing through the point and extending to the edges of

the polytope as shown in the figure. Using the property of this section, the function

value at the initial circle has to be lower than the value at one of the end points of

the line segment, i.e., at the two red squares. It should be obvious that the function

values at these two red squares will be further lower than the function values at one

of the three vertices. Similarly, the minimum function value of a concave function

restricted within a line segment always occurs at one of the end points. Therefore,

the minimum function value of a concave function over a polytope always occurs at

the vertices.
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Figure 7.9: Maximum function value over a line segment

Property 4: Non-negative weighted sum of convex functions

This property comes from two facts: Non-negative scaling of a convex function yields

a convex function. And the sum of convex functions yields a convex function too.

As a result, if fi are all convex functions and wi are non-negative scalars, then the

function h is convex:

h = w1 · f1 + ...+ wn · fn (7.10)

Similarly, the non-negative weighted sum of concave functions yields a concave func-

tion as well.

7.2 The Recursive Stability Algorithm

The recursive stability algorithm used to generate Fig. 7.1 is formulated in this

section. This algorithm generates collective statements about the state trajectories
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Figure 7.10: A convex function over a polyhedron

of the LPV model, which is given again in Equation (7.11) below:

xk+1 = A(ζ) · xk +B1 · uk +B2 · T420,k + d(ζ) (7.11)

where

x =

[
nO2
θs

Tθs

]

u = Vevc

T420,k = gcomb
(
xk
)

is the exhaust temperature

ζ is the trap ratio

In this section, the EVC command is assumed known and of fixed value. Furthermore,

the trap ratio, ζ, is assumed a constant as well. As the trap ratio is dominantly

influenced by the EVC command, using a constant trap ratio to discuss the stability

properties under constant EVC is reasonable. The full effect of varying trap ratio on

the state trajectories is discussed later in the chapter when the stability algorithm is

generalized to include model uncertainties. As will be shown later, the statements on



CHAPTER 7. STABILITY AND ROBUSTNESS ANALYSIS OF HCCI 128

the state trajectories made with varying trap ratio is analogous to the results with a

constant ζ. Therefore, assuming a constant trap ratio here help build both physical

and mathematical intuitions before introducing the more general derivation.

The other varying parameter, T420, is incorporated into the stability analysis with

no simplifications. The stability algorithm in the following sections relies on the

property that the exhaust temperature, T420,k = gcomb(xk), is a convex function of the

states. The following subsection first examines the convexity of gcomb.

7.2.1 Convexity of gcomb

To make the stability algorithm possible, the convexity of gcomb needs to be estab-

lished. Due to the use of the Arrhenius model, gcomb does not readily have an explicit

form. This makes an analytical convexity proof difficult to come by. However, the

values of gcomb can be easily simulated and sampled by a computer throughout the

state space. The convexity of the function can then be examined via Property 2

in Section 7.1.2, i.e., by finding a subgradient at each sample point such that the

associated hyperplane lies under all other sample points as illustrated in Fig. 7.8. It

is possible to use other ignition models instead of the Arrhenius integral in the follow-

ing stability algorithm as long as it yields a convex relationship between T420 and the

states. Later in this chapter when model uncertainties are included, this convexity

requirement is further relaxed and the combustion temperature map only needs to

be bounded above and below by two convex functions. As the “bowl-shaped” char-

acteristics of gcomb come from the physical effect of decreased heat transfer and work

output due to retarded ignition phasing, other ignition models should give similar

“bowl-shaped” characteristics and satisfy this mild constraint (bounded above and

below by convex functions).

To provide completeness, roughly 2500 sample points of gcomb were generated and

forms a dense grid in the state space. Using the convex optimization software CVX, a

subgradient can indeed be found for each of the 2500 sample points. In other words,
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2500 qi were found to satisfy the following:

T s,j420 ≥ T s,i420 + qi
T · (xs,j − xs,i), ∀i = 1, ...n, ∀j = 1, ...n

where (xs,i, T s,i420) is a sample point of the function gcomb, i.e.,

T s,i420 = gcomb(x
s,i), i = 1, ..., n

7.2.2 The Nominal Firing Zone

With gcomb established as a convex function, the following stability algorithm is pos-

sible. The first step in this algorithm is defining a “nominal firing zone”, denoted

Φ0. This is a polytope in the state space that houses all initial conditions of interest.

Choosing the nominal firing zone as a ploytope bears mathematical significance and

is shown later in this section. Essentially, all state trajectories originating from a

polytope in the state space (there are infinite number of possible state trajectories

from this polytope), can be bounded collectively by solving a finite number of linear

programs and checking a finite number of corner conditions.

The particular firing zone shown in this thesis is defined with two vectors, e1 and

C:

e1 =
[

1 0
]T

C =
[

∂h

∂n
O2
θs

∂h
∂Tθs

]T ∣∣
n
O2
θs

=n
O2
θs,ss

,Tθs=Tθs,ss

As shown above, e1 is one of the vectors that makes up the standard basis for R2, as

commonly defined in linear algebra textbooks. Therefore, eT1 ·x gives the first element

of the state vector, i.e., the oxygen content state. The vector C is defined similarly

to the output matrix of the linearized model of the NL, since it is the gradient of the

nonlinear output equation, h, of the NL model. Therefore, CT ·x gives the combustion

timing (in a linear sense).
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Figure 7.11: The nominal firing zone

The nominal firing zone, Φ0, is given as follows:

Φ0 =
{
x
∣∣∣ e1T · x ≤ nu0 , e1

T · x ≥ nl0, CT · x ≤ θu0 , CT · x ≥ θl0

}
(7.12)

The first two inequalities in (7.12) constrain the in-cylinder oxygen content between

a pair of upper and lower bounds, i.e., nu0 and nl0. The usage of the variable n is to

remind the readers that these bounds are related to the number of moles of oxygen.

The last two inequalities in (7.12) translates to a pair of bounds on the combustion

timing (in a linear sense). The choice of using the variable θu and θl signifies that

CT ·x is associated with combustion timing, θ50. The subscripts, 0, attached to these

bounds mean that they are for the initial conditions on cycle 0.

The physical interpretation behind this nominal firing zone is apparent. The

oxygen content bounds represent a range of acceptable air-fuel ratio, since too lean a

mixture can lead to misfire and too rich a mixture can lead to incomplete combustion

which is inefficient. In addition, the combustion timing obviously needs to be bounded

above by a late phasing threshold, away from the misfire region, and bounded below
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by an early phasing threshold for acceptable rate of pressure rise. This nominal firing

zone is the region enclosed by the parallelogram shown in Fig. 7.11 and the four

boundaries are indicated in the figure. The nominal firing zone shown in Fig. 7.11

represents a rather “wide” set of initial conditions. Specifically, this zone translates

to a range of λ between 1.2 and 2.1 (as seen in the cylinder, which is higher than the λ

calculated with the steady-state air and fuel flow rate), and a range of θ50 between 359

CAD and 380 CAD. Of course, the size of this nominal firing zone can be modified for

the particular scenario to be discussed, i.e., including all initial conditions of interest

in that particular scenario.

7.2.3 Bounded Set on the Next Cycle

With all acceptable initial conditions, x0, inside the nominal firing zone, the objective

of the stability algorithm is to find a region in the state space, which is similar in

shape to Φ0, that houses all x1. Or, more generally, finding a bounded set Φk+1 that

houses all xk+1, assuming xk can originate anywhere in Φk. Specifically, the problem

statement of this algorithm is as follows:

Problem statement: Stability algorithm

Given Φk, find Φk+1, such that all xk+1 ∈ Φk+1 for all xk ∈ Φk, where

Φk =
{
x
∣∣∣ e1T · x ≤ nuk , e1

T · x ≥ nlk, CT · x ≤ θuk , CT · x ≥ θlk

}

Φk+1 =
{
x
∣∣∣ e1T · x ≤ nuk+1, e1

T · x ≥ nlk+1, CT · x ≤ θuk+1, CT · x ≥ θlk+1

}

xk+1 = A · xk +B1 · uk +B2 · gcomb(xk) + d

A subtlety in the above expressions is that theA and dmatrices are no longer functions

of the trap ratio, since ζ is assumed constant here. The above problem translates to

finding a set of bounds nuk+1, n
l
k+1, θ

u
k+1 and θlk+1 that define Φk+1.
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Finding nuk+1 and θlk+1

The upper bound on the oxygen content, nuk+1, and the lower bound on the combustion

timing, θlk+1, can be chosen according to Theorem 7.1 and Theorem 7.2. These

theorems are stated and proved as follow:

Theorem 7.1 Suppose the four vertices of Φk are xvtx,ik , for i = 1, ..., 4, then nuk+1

can be chosen according to Equation (7.13).

nuk+1 = max
i=1,...,4

{
eT1A · xvtx,ik + eT1B1 · uk + eT1B2 · gcomb(xvtx,ik ) + eT1 d

}
(7.13)

Proof:

nuk+1 needs to satisfy the following inequality:

nuk+1 ≥ eT1 · xk+1

= eT1A · xk + eT1B1 · uk + eT1B2 · gcomb(xk) + eT1 d, ∀xk ∈ Φk (7.14)

Excluding the eT1B2 ·gcomb(xk) term, the RHS of (7.14) is affine in xk. This means that

these terms combine to form a convex function of xk (or concave, since it is affine).

Furthermore, since eT1B2 is positive and gcomb is convex, eT1B2 · gcomb(xk) remains a

convex function of xk. This is because the non-negative scaling of a convex function

still yields a convex function. As a result, the RHS of (7.14) is the sum of convex

functions, which is a convex function itself. Therefore, the maximum value of the

RHS of (7.14) over Φk, which is a polytope, always occurs at one of the four vertices

of Φk (Property 3 in Section 7.1.2). This gives the following:

max
i=1,...,4

{
eT1A · xvtx,ik + eT1B1 · uk + eT1B2 · gcomb(xvtx,ik ) + eT1 d

}

≥ eT1A · xk + eT1B1 · uk + eT1B2 · gcomb(xk) + eT1 d, ∀xk ∈ Φk
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As a result, the following holds:

nuk+1 = max
i=1,...,4

{
eT1A · xvtx,ik + eT1B1 · uk + eT1B2 · gcomb(xvtx,ik ) + eT1 d

}

≥ eT1A · xk + eT1B1 · uk + eT1B2 · gcomb(xk) + eT1 d, ∀xk ∈ Φk

= eT1 · xk+1 (7.15)

The above shows that choosing nuk+1 as stated in Theorem 7.1 indeed gives a valid

upper bound on the oxygen content on the next cycle. 2

Similarly, the lower bound on combustion timing on the next cycle, θlk+1, can be

chosen according to Theorem 7.2.

Theorem 7.2 Suppose the four vertices of Φk are xvtx,ik , for i = 1, ..., 4, then θlk+1

can be chosen according to Equation (7.16).

θlk+1 = min
i=1,...,4

{
CTA · xvtx,ik + CTB1 · uk + CTB2 · gcomb(xvtx,ik ) + CTd

}
(7.16)

Proof:

The proof for this theorem is similar to the previous one. The difference is that the

argument here is made with concave functions instead of convex functions.

θlk+1 needs to satisfy the following inequality:

θlk+1 ≤ CT · xk+1

= CTA · xk + CTB1 · uk + CTB2 · gcomb(xk) + CTd, ∀xk ∈ Φk (7.17)

Excluding the CTB2·gcomb(xk) term, the RHS of (7.17) is affine in xk. This means that

these terms combine to form a concave function of xk. Furthermore, since CTB2 is

negative and gcomb is convex, CTB2 ·gcomb(xk) is a concave function of xk. As a result,

the RHS of (7.17) is the sum of concave functions, which is a concave function itself.

Therefore, the minimum value of the RHS of (7.17) over Φk, which is a polytope,
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always occurs at one of the four vertices of Φk. This gives the following:

min
i=1,...,4

{
CTA · xvtx,ik + CTB1 · uk + CTB2 · gcomb(xvtx,ik ) + CTd

}

≤ CTA · xk + CTB1 · uk + CTB2 · gcomb(xk) + CTd, ∀xk ∈ Φk

As a result, the following holds:

θlk+1 = min
i=1,...,4

{
CTA · xvtx,ik + CTB1 · uk + CTB2 · gcomb(xvtx,ik ) + CTd

}

≤ CTA · xk + CTB1 · uk + CTB2 · gcomb(xk) + CTd, ∀xk ∈ Φk

= CT · xk+1 (7.18)

The above shows that choosing θlk+1 as stated in Theorem 7.2 indeed gives a valid

lower bound on the combustion timing on the next cycle. 2

Finding nlk+1 and θuk+1

Two of the four bounds needed to define Φk+1 are given in the previous section,

the remaining two bounds, nlk+1 and θuk+1, are given here. For finding these two

boundaries, Property 2 in Section 7.1.2 is used, i.e., the fact that gcomb is bounded

below by the hyperplanes defined by the subgradients. As pointed out, each one of

these hyperplanes is a global under-estimator of the convex function as shown in Fig.

7.6. Furthermore, the point-wise maximum of a number of the hyperplanes forms a

global lower bound still, as shown in Fig. 7.7. As a result, the subgradients (and the

hyperplanes they defined) can be used in the following method for finding nlk+1 and

θuk+1.

m hyperplanes are first chosen to form a global lower bound for gcomb, that is:

T420,k = gcomb(xk) ≥ max
i=1,...,m

{
T s,i420 + qi

T · (xk − xs,i)
}

(7.19)
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where (xs,i, T s,i420) are sample points of gcmob. Equation (7.19) can be written equiva-

lently as m simultaneous inequalities:

T420,k = gcomb(xk) ≥ T s,i420 + qi
T · (xk − xs,i), ∀i = 1, ...,m (7.20)

nlk+1 and θuk+1 can be obtained according to Theorem 7.3 and Theorem 7.4.

Theorem 7.3 Suppose J∗n is the optimal objective of the linear program (LP) shown

in (7.21), with xk and rk as the optimization variables, then nlk+1 can be chosen as

nlk+1 = J∗n + eT1B1 · uk + eT1 d

minimize eT1A · xk + eT1B2 · rk (7.21)

subject to :

xk ∈ Φk

rk ≥ T s,i420 + qi
T · (xk − xs,i), ∀i = 1, ...,m

The full proof of this theorem is deferred until Appendix C. Note that the constraint

of xk ∈ Φk in the problem (7.21) is a set four linear inequalities. As a result, the

optimization problem shown has a linear objective and m + 4 linear inequality con-

straints, which is indeed a LP. Some key points in the proof are described as follows.

Suppose the LP in (7.21) is sovled with the optimizers x∗k and r∗k with the optimal

objective J∗n. Then the following optimality condition holds:

r∗k = max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

The above condition means that the rk∗ always ends up exactly on the point-wise

maximum of the m hyperplanes chosen to form the global lower bound for gcomb.
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Furthermore, it can be shown that

J∗n = eT1A · x∗k + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

≤ eT1A · xk + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (xk − xs,i)
}
, ∀xk ∈ Φk

With the knowledge that eT1B2 > 0, the following can be concluded:

nlk+1 = eT1A · x∗k + eT1B1 · uk + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

+ eT1 d

≤ eT1A · xk + eT1B1 · uk + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (xk − xs,i)
}

+ eT1 d, ∀xk ∈ Φk

≤ eT1A · xk + eT1B1 · u0 + eT1B2 · gcomb(xk) + eT1 d, ∀xk ∈ Φk

= eT1 · xk+1

As shown above, nlk+1 is indeed a lower bound on oxygen content on the next cycle.

The upper bound on combustion timing, θuk+1, can be found in a similar manner

according to Theorem 7.4.

Theorem 7.4 Suppose J∗θ is the optimal objective of the linear program (LP) shown

in (7.22), with xk and rk as the optimization variables, then θuk+1 can be chosen as

θuk+1 = J∗θ + CTB1 · uk + CTd

maximize CTA · xk + CTB2 · rk (7.22)

subject to :

xk ∈ Φk

rk ≥ T s,i420 + qi
T · (xk − xs,i), ∀i = 1, ...,m

With the knowledge of CTB2 < 0, the proof for Theorem 7.4 is similar to the one

for Theorem 7.3 shown in Appendix C. The above two LPs along with the method

for obtaining nuk+1 and θlk+1 give the four bounds required to define Φk+1, the bounded

set where all xk+1 reside in.
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7.2.4 A Recursive Scheme

Given the nominal firing zone shown in Section 7.2.2, the above approach can be used

recursively to generate the sequence of bounded sets shown in Fig. 7.1. In general,

assuming all xk reside in Φk, then Φk+1 can be ascertained by checking the vertices

of Φk and solving two LPs. Note that the particular EVC command used in Fig. 7.1

results in the state trajectories converging to the small bounded set near the bottom

of the bowl in the combustion temperature map in Fig. 6.1, i.e., the “sweet spot”

region described in Chapter 4.

7.2.5 Invariant Sets

As explained in the opening section of this chapter, invariant sets are central in this

recursive algorithm to show the boundedness of the state trajectories for all cycles.

Specifically, if the bounded set Φk+1 is a subset of Φk (enclosed by Φk), then Φk+1 is

an invariant set. This is stated in Theorem 7.5 and proved below.

Theorem 7.5 If Φk+1 ⊆ Φk, and for any xk ∈ Φk implies xk+1 ∈ Φk+1, then Φk+1 is

an invariant set.

Proof :

It is obvious that any xk+1 ∈ Φk+1 also satisfy xk+1 ∈ Φk, since Φk+1 is a subset

of Φk. Furthermore, any xk+1 ∈ Φk implies xk+2 ∈ Φk+1, this is guaranteed by the

problem statement of the stability algorithm. The same argument can be used on all

subsequent cycles and show that xi ∈ Φk+1 for all i ≥ k+ 1, i.e., Φk+1 is an invariant

set.2

To summarize, the recursive stability algorithm operates in the following manner:

• Define a nominal firing zone Φ0.

• Proceed to find the bounded sets Φk recursively by solving two LPs and checking

the vertices of Φk−1 in each recursion. (Based on Theorem 7.1, 7.2, 7.3 and

7.4)
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Figure 7.12: Stability analysis (fixed trap ratio): open- and closed-loop comparison
around a late-phasing point: black dashed-(open loop), red solid-(closed loop)

• If there exists a Φk that is completely enclosed by Φk−1, then Φk is a proven

invariant set. This means that all initial conditions inside Φ0 converges within

Φk at precisely cycle k and stays there for all subsequent cycles.

• If the size of the invariant set is satisfactorily small, the recursion can be ter-

minated. If not, continue the recursion in search of smaller invariant sets.
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Figure 7.13: θ50 bounds (fixed trap ratio): open- and closed-loop comparison around
a late-phasing point.

7.2.6 Stability Analysis: OL vs. CL Late-Phasing Operation

The late-phasing local controller shown in Chapter 5 is able to regulate the oscillatory

combustion timing response around a late phasing operating point. Note that this

feedback controller is based on the quadratic cost shown in Equation (5.2), with an

aggressive tuning to regulate combustion timing (Q� R). In this example, the open-

and closed-loop system response is examined with the recursive stability algorithm.

The two cases start from the same nominal firing zone shown in blue in the first

subplot in Fig. 7.12, and the resulting bounded sets are shown with the black dashed

line representing the open-loop case, and the red solid line representing the closed-loop

case. As can be seen, the feedback controller generally shrinks the bounded sets in

the “combustion timing” direction much more aggressively than the open-loop case.

However, the controller is allowing a slower convergence of oxygen content to make the

fast combustion timing convergence possible. The nonlinear model output equation,
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θ50 = h(x), can be further evaluated over the bounded sets shown in Fig. 7.12 to

generate θ50 bounds on each cycle for the two cases. These bounds are shown in Fig.

7.13. Corroborating the previous insight, the feedback controller is indeed shrinking

the combustion timing bounds much more quickly than the open loop case. These

observations match well to the way that the weights are tuned in the quadratic cost

function (5.2). It should be noted that the LQR controller is only aware of the local

linearized dynamics, but it is shown to improve the combustion timing response even

when it is paired with the more complicated LPV model (which is almost equivalent

to the nonlinear model).

In this analysis, the trap ratio, ζ, is assumed a constant, which does not capture

the full detail of the two scenarios. Particularly, the EVC is actually changing in the

closed-loop scenario due to the feedback control law. In the next section, the recursive

algorithm is generalized to include model uncertainty and is able to take the varying

trap ratio into account.

7.3 Generalization: Robustness Analysis

In this section, the recursive stability algorithm is modified to accommodate model

uncertainties and generalized as a robustness analysis. Recall that the LPV model

has the following format:

xk+1 = A(ζ) · xk +B1 · uk +B2 · gcomb(xk) + d(ζ)

In this section, the model uncertainties can exist in the system matrices, or in the

combustion temperature map, gcomb, as described below.

7.3.1 Uncertainties in the System Matrices

The immediate need to allow model uncertainties in the system matrices is to account

for the effect of varying trap ratio, ζ. In this generalization, the trap ratio is allowed

to vary in an interval, ζ ∈ [ζ1 ζ2]. Note that any ζ in this interval can be expressed
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as the convex combination of the two extremes:

ζ =
2∑

i=1

θi · ζ i,
2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2

As shown in Equation (6.13) in Chapter 6, the A and d matrix of the LPV model

are affinely dependent on the trap ratio. Therefore, A(ζ) for any ζ ∈ [ζ1 ζ2] can be

expressed as follows:

A(ζ) = A
( 2∑

i=1

θi · ζ i
)
,

2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2

=
2∑

i=1

θi · A
(
ζ i
)
,

2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2 (7.23)

The above means that any allowable A(ζ) can be expressed as the convex combination

of the two A matrices evaluated at the two extremes of ζ. Similarly, any allowable

d(ζ) can be expressed as follows:

d(ζ) =
2∑

i=1

θi · d
(
ζ i
)
,

2∑

i=1

θi = 1, θi ≥ 0, i = 1, 2 (7.24)

Note that there are infinite number of A(ζ) and d(ζ) in the allowable range of ζ. It

will be shown later that the state trajectories propagated by these infinite number of

system matrices can be bounded by checking the system behavior at the two extremes

of ζ.

It is further possible to include varying parameters other than the trap ratio in the

formulation, as long as the system matrices A, B1, B2 and d are affinely dependent

on these additional varying parameters. For example, the A matrix can be affinely
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dependent on a vector of p varying parameters, η =
[
η1 ... ηp

]T
:

A(η) = A0 + η1 · A1 + η2 · A2 + ...+ ηp · Ap (7.25)

ηi ≤ ηmaxi , ∀i = 1, ..., p

ηi ≥ ηmini , ∀i = 1, ..., p

The derivation in the following sections can be easily modified to accommodate the

case with additional varying parameters shown in (7.25). As a result, the proposed

method to include the uncertain environmental parameters shown in Equation (6.15)

in Section 6.3.3 fits into this framework.

7.3.2 Uncertainties in the Combustion Temperature Map

Previously, the exhaust temperature is assumed to be a convex function of the states

in the recursive stability algorithm, i.e.,

T420,k = gcomb(xk)

gcomb is convex

In reality, there are a number of things that can influence gcomb. To name a couple,

uncertain fuel quality and heat transfer characteristics can influence the amount of

effective energy addition to the in-cylinder gas, which in turn affects the exhaust

temperature T420. Therefore, it is natural to allow perturbations in the nominal

combustion temperature map gcomb. In the robustness analysis, T420,k is not known

exactly besides being bounded above and below by two convex functions:

glcomb(xk) ≤ T420,k ≤ gucomb(xk) (7.26)

glcomb and gucomb are both convex

Qualitatively, this requirement enforces the combustion temperature to maintain its

general ”bowl shape”.
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7.3.3 Robustness Analysis: Bounded Set on the Next Cycle

Just as the stability algorithm, the robustness analysis starts from a nominal firing

zone, Φ0, and proceeds to find the bounded set for each cycle. The difference is that

the system matrices are affinely dependent on the trap ratio in a bounded range, and

the exhaust temperature map is not known exactly except being bounded above and

below by convex functions. The problem statement of this robustness algorithm is

given as follows:

Problem statement: Robustness algorithm

Given Φk, find Φk+1, such that all xk+1 ∈ Φk+1 for all xk ∈ Φk, where

Φk =
{
x
∣∣∣ e1T · x ≤ nuk , e1

T · x ≥ nlk, CT · x ≤ θuk , CT · x ≥ θlk

}

Φk+1 =
{
x
∣∣∣ e1T · x ≤ nuk+1, e1

T · x ≥ nlk+1, CT · x ≤ θuk+1, CT · x ≥ θlk+1

}

xk+1 = A(ζ) · xk +B1 · uk +B2 · T420,k + d(ζ)

ζ1 ≤ ζ ≤ ζ2, glcomb(xk) ≤ T420,k ≤ gucomb(xk)

This again translates to finding a set of bounds nuk+1, n
l
k+1, θ

u
k+1 and θlk+1 that define

Φk+1.

Finding nuk+1 and θlk+1

The upper bound on the oxygen content, nuk+1, and the lower bound on the combustion

timing, θlk+1, can be chosen according to Theorem 7.6 and Theorem 7.7. These

theorems are stated and proved as follow:

Theorem 7.6 Suppose the four vertices of Φk are xvtx,ik , for i = 1, ..., 4, then nuk+1

can be chosen according to Equation (7.27).

nuk+1 = max
j=1,2

{
max
i=1,...,4

{
eT1A(ζj) · xvtx,ik + eT1B1 · uk + eT1B2 · gucomb(xvtx,ik ) + eT1 d(ζj)

}}

(7.27)
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Proof:

nuk+1 needs to satisfy the following inequality for any ζ ∈ [ζ1 ζ2] and any xk ∈ Φk:

nuk+1 ≥ eT1 · xk+1

= eT1A(ζ) · xk + eT1B1 · uk + eT1B2 · T420,k + eT1 d(ζ) (7.28)

Since eT1B2 > 0 and T420 is bounded above by gucomb, the last line of Equation (7.28)

can be bounded above as follows:

eT1A(ζ) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1 d(ζ)

≥ eT1A(ζ) · xk + eT1B1 · uk + eT1B2 · T420,k + eT1 d(ζ) (7.29)

Therefore, if nuk+1 is chosen to be greater than the LHS of (7.29) for any ζ ∈ [ζ1 ζ2]

and any xk ∈ Φk, then it satisfies (7.28). Recalling the relationship shown in Equation

(7.23) and (7.24), the LHS of (7.29) can be further expressed as follows, for some θ

that satisfies
∑2

j=1 θj = 1 and θj ≥ 0, j = 1, 2:

eT1A(ζ) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1 d(ζ)

= eT1

2∑

j=1

θj · A(ζj) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1

2∑

j=1

θj · d(ζj)

=
2∑

j=1

θj ·
[
eT1A(ζj) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1 d(ζj)

]
(7.30)

For any j = 1, 2 and xk ∈ Φk, the maximum of the term inside the brackets in the

last line of (7.30) always occurs at one of the vertices, xvtx,ik , of Φk. This is because

eT1B2 > 0 and gucomb is a convex function of xk. As a result, the term inside the

brackets in the last line of (7.30) is convex in xk for any j = 1, 2. Thus, the following

inequality holds for any j = 1, 2 and xk ∈ Φk:

max
i=1,...4

{
eT1A(ζj) · xvtx,ik + eT1B1 · uk + eT1B2 · gucomb(xvtx,ik ) + eT1 d(ζj)

}

≥ eT1A(ζj) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1 d(ζj) (7.31)
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The LHS of (7.31) can be further bounded above for any j = 1, 2,:

max
j=1,2

{
max
i=1,...,4

{
eT1A(ζj) · xvtx,i0 + eT1B1 · u0 + eT1B2 · gucomb(xvtx,i0 ) + eT1 d(ζj)

}}

≥ max
i=1,...4

{
eT1A(ζj) · xvtx,ik + eT1B1 · uk + eT1B2 · gucomb(xvtx,ik ) + eT1 d(ζj)

}
(7.32)

Choosing nuk+1 as the LHS of (7.32), and combining all of the above results, the

following holds for any ζ1 ≤ ζ ≤ ζ2, xk ∈ Φk, and some θ that satisfies
∑2

j=1 θj = 1

and θj ≥ 0, j = 1, 2:

eT1 · xk+1 = eT1A(ζ) · xk + eT1B1 · uk + eT1B2 · T420,k + eT1 d(ζ)

≤ eT1A(ζ) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1 d(ζ)

=
2∑

j=1

θj ·
[
eT1A(ζj) · xk + eT1B1 · uk + eT1B2 · gucomb(xk) + eT1 d(ζj)

]

≤
2∑

j=1

θj ·
[

max
i=1,...4

{
eT1A(ζj) · xvtx,ik + eT1B1 · uk + eT1B2 · gucomb(xvtx,ik ) + eT1 d(ζj)

}]

≤
2∑

j=1

θj ·max
j=1,2

{
max
i=1,...4

{
eT1A(ζj) · xvtx,ik + eT1B1 · uk + eT1B2 · gucomb(xvtx,ik ) + eT1 d(ζj)

}}

= max
j=1,2

{
max
i=1,...4

{
eT1A(ζj) · xvtx,ik + eT1B1 · uk + eT1B2 · gucomb(xvtx,ik ) + eT1 d(ζj)

}}

= nuk+1

which shows choosing nuk+1 according to Theorem 7.6 indeed gives a valid upper

bound on the oxygen content on the next cycle.2

Similarly, the lower bound on combustion timing, θlk+1, can be chosen according to

Theorem 7.7, which is shown below.

Theorem 7.7 Suppose the four vertices of Φk are xvtx,ik , for i = 1, ..., 4, then θlk+1
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can be chosen according to Equation (7.33).

θlk+1 = min
j=1,2

{
min
i=1,...,4

{
CTA(ζj) · xvtx,ik + CTB1 · uk + CTB2 · gucomb(xvtx,ik ) + CTd(ζj)

}}

(7.33)

The proof is neglected since it is very similar to the one presented for Theorem 7.6.

Finding nlk+1 and θuk+1

For finding these two boundaries, the concept of bounding T420,k below by hyperplanes

in the stability algorithm is reused. The only difference is that these hyperplanes first

form a global lower bound for glcomb, which, in turn, is a global lower bound for T420.

Specifically, m hyperplanes defined by the subgradients, qi, are chosen at the m

sample points, xs,i, of glcomb. Next, the point-wise maximum of these hyperplanes

forms a global lower bound on the T420,k:

T420,k ≥ glcomb(xk)

≥ glcomb(x
s,i
k ) + qi

T · (xk − xs,i), ∀i = 1, ...,m (7.34)

Note that these qi always exist, because glcomb is a convex function as specified in the

problem formulation. With these hyperplanes, nlk+1 and θuk+1 can be found according

to Theorem 7.8 and Theorem 7.9 as shown below.

Theorem 7.8 Suppose, for each j = 1, 2, J∗n,j are the optimal objectives of the LPs

shown in (7.35), with xk and rk as the optimization variables, then nlk+1 can be chosen

according to Equation (7.36).

minimize eT1A(ζj) · xk + eT1B2 · rk (7.35)

subject to :

xk ∈ Φk

rk ≥ glcomb(x
s,i
k ) + qi

T · (xk − xs,i), ∀i = 1, ...,m
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nlk+1 = min
j=1,2

{
J∗n,j + eT1B1 · uk + eT1 d(ζj)

}
(7.36)

The above theorem (Theorem 7.8) can be proved by combining the results shown

in the proof for Theorem 7.3 and Theorem 7.6. Essentially, for each j = 1, 2, the

term in the curly brackets shown in Equation (7.36) is the minimum oxygen content

on the next cycle, assuming the system matrices A(ζ) and d(ζ) are evaluated at the

two extremes of ζ. This can be shown with a derivation similar to the proof for

Theorem 7.3 (shown in Appendix C). It follows that the lower of the two minimum

values with ζ at the two extremes is a common lower bound for any ζ in [ζ1 ζ2]. This

can shown by using an argument analogous to the proof for Theorem 7.6.

Similarly, Theorem 7.9 can be used to find θuk+1:

Theorem 7.9 Suppose, for each j = 1, 2, J∗θ,j are the optimal objectives of the LPs

shown in (7.37), with xk and rk as the optimization variables, then θuk+1 can be chosen

according to Equation (7.38).

maximize CTA(ζj) · xk + CTB2 · rk (7.37)

subject to :

xk ∈ Φk

rk ≥ glcomb(x
s,i
k ) + qi

T · (xk − xs,i), ∀i = 1, ...,m

θuk+1 = max
j=1,2

{
J∗θ,j + CTB1 · uk + CTd(ζj)

}
(7.38)

Combining Theorem 7.6, 7.7, 7.8 and 7.9 completely specifies the bounded set

Φk+1. As can be seen, finding Φk+1 for the varying trap ratio case requires checking

twice as many vertices and solving twice as many LPs compared to the stability

algorithm with a constant ζ. More generally, the size of the problem doubles every
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Figure 7.14: Robustness analysis (varying trap ratio): open- and closed-loop compar-
ison around a late-phasing point: black dashed-(open loop), red solid-(closed loop)

time a new varying parameter is introduced to influence the system matrices.

7.3.4 Robust Analysis Examples

Using the recursive robustness algorithm developed, two robustness analysis examples

are presented in this section.
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Figure 7.15: θ50 bounds (varying trap ratio): open- and closed-loop comparison
around a late-phasing point.

Uncertainty in Trap Ratio: OL vs CL Late Phasing Operation

In this example, the late-phasing, open- and closed-loop analysis shown in Section

7.2.6 is revisited with the full detail of varying trap ratio. Due to the feedback

controller changing the EVC, the trap ratio for the closed-loop late phasing scenario

is assumed to be within the range of [0.495 0.525]. This range is estimated through

observing the trap ratio of the nonlinear model. For the open-loop case, the trap ratio

is bounded within the range of [0.505 0.515]. The smaller range in open loop is due

to the fact that EVC is not changing in this case, and the trap ratio is only slightly

perturbed around the nominal value by Tθs and T420. Note that the full 15 CAD

range of EVC movement useful on the experimental test bed roughly translates to a

range of trap ratio of [0.49 0.61]. In this example, there is no uncertainty assumed

in the combustion temperature map.

The resulting bounded sets are shown in Fig. 7.14 with the open-loop case shown
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in the black, dashed line and the the closed-loop case shown in the red solid line. As

can be seen, the qualitative behavior of the two cases remain unchanged. In general,

the controller still shrinks the bounded sets in the “combustion timing” direction more

aggressively than the open loop case. As before, the output equation of the nonlinear

model can operate on each of the bounded sets shown in Fig. 7.14 and generate θ50

bounds for the two cases. These θ50 bounds are shown in Fig. 7.15. Again, the

closed-loop controller can regulate combustion timing much more quickly compared

to the open-loop case. The steady-state θ50 bounds in this case is wider compared to

the bounds with a constant trap ratio shown in Fig. 7.13. Due to the uncertainty in

the trap ratio in this robustness analysis, it is impossible for the algorithm to further

decrease the size of the bounded sets and the θ50 bounds.

Bounded Disturbance on the Temperature State

Engine data typically exhibits some stochastic characteristics, as can be seen in all of

the test bed responses shown in this thesis. One approach to account for this cycle-

to-cycle variation in a deterministic model is by injecting a random disturbance. In

this section, a cycle-to-cycle temperature disturbance, wk, is assumed to influence the

state propagation equation:

xk+1 = A(ζ) · xk +B1 · uk +B2 · gcomb(xk) + d(ζ) + e2 · wk (7.39)

where e2 =
[

0 1
]T

and −Tdis ≤ wk ≤ Tdis

This disturbance, wk, is bounded by a maximum magnitude but is otherwise unknown.

Note that equation (7.39) readily fits the format of the robustness analysis, since the

wk can be viewed as an additional varying parameter and the system matrices (the

bias term) is affinely dependent on it. In this example, no uncertainty exists in the

combustion temperature map gcomb. The LPV model under the influence of wk is

examined at three sets of conditions: open-loop early-phasing operation as shown in

the top plot of Fig. 4.1, open-loop late-phasing operation as shown in the bottom

plot of Fig. 4.1, and closed-loop late-phasing operation as seen in the top plot of
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Figure 7.16: Steady-state invariant sets with bounded temperature disturbance: blue-
(open loop, early phasing), black-(open loop, late phasing), red-(closed loop, late
phasing)

Fig. 5.1. The engine data at these three sets of conditions is re-plotted in blue in

Fig. 7.17. For the two open-loop cases, the trap ratios are allowed to vary in a range

of ±0.05 with respect to the nominal values. For the closed-loop case, ζ is within a

bound of ±0.15 with respect to the nominal value to account for the changing EVC.

The next step in this robustness analysis is determining an appropriate maximum

magnitude, Tdis, of the disturbance wk. To that end, a magnitude is first assumed

and run through the robust algorithm with the first sets of conditions, i.e., open-

loop early-phasing operation. The resulting steady-state invariant set can be used to

generate a steady-state θ50 bound. This bound is then compared to the peak-to-peak

variations exhibited in the test bed data, and the magnitude of wk is tuned until the

analytical θ50 bound matches reasonably well to the data. The same magnitude of

wk is then used for the other two scenarios. With this approach, the magnitude of

wk is found to be −4.75 Kelvin ≤ wk ≤ 4.75 Kelvin.

The three resulting steady-state invariant sets for each cases is shown in Fig. 7.16.
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Figure 7.17: Steady-state θ50 bounds with bounded temperature disturbance

As can be seen, the invariant set for the open-loop early-phasing condition (blue)

occupies the upper left corner of Fig. 7.16, which has higher temperature and lower

oxygen content (due to the higher amount of trapped exhaust that is inhibiting fresh

air induction). The relatively well-behaved early-phasing operation can be seen in the

size of the steady-state invariant set, which is far smaller than the two invariant sets

for late-phasing operation. The two late-phasing invariant sets match the intuition

from observing the engine data and from the previous stability analysis around the

late phasing point. As can be seen, the invariant set with the feedback controller

is tighter in the “combustion timing” direction, but wider in the oxygen content

direction. Three sets of steady-state θ50 bounds corresponding to three steady-state

invariant sets shown in Fig. 7.16 can be calculated. These θ50 bounds are shown as
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the red dashed lines, and are over-plotted with the engine data in Fig. 7.17. The

qualitative behavior of the θ50 bounds match well to the intuition, i.e., the bounds are

the tightest during early-phasing operation, the widest during open-loop late-phasing

operation, and the feedback controller is able to shrink the θ50 bounds in closed-loop.

Quantitatively, the θ50 bounds are reasonable too. In the top and bottom plot of Fig.

7.17, the engine data mostly lies within the red analytical bounds. In the middle plot,

there are more data points exceeding the analytical lower bound on θ50, and these

data points are often preceded by a late combustion timing on the previous cycle.

These excursions outside the bounds may be because the nonlinear model, which is

based on various simplifying assumptions, does not capture some of the more complex

behavior on the test bed when the combustion timing is extremely late.

7.4 Comparison of Stability Statements

Before the chapter is concluded, the stability statements obtained with the recursive

algorithm and with the SDP in (5.25) are compared graphically. Note that these two

analysis approaches establish stability statements for two different models, i.e., the

LPV model and three-region switching linear model.

For the switching linear model, the positive-definite matrix, P , obtained with the

SDP in (5.25) satisfies the following condition:

xTk · P · xk − xTk+1 · P · xk+1 ≥ γ · xTk · P · xk (7.40)

where x is the system states of the switching linear model, and γ is the corresponding

dissipation rate. Therefore, given a set of initial conditions, x0, defined by the α-

sublevel set of the Lyapunov function:

x0 =
{
s
∣∣∣ sT · P · s ≤ α

}
(7.41)

the state trajectories of the switching linear model can be bounded with the inequality

shown in (7.40) on a cycle-by-cycle basis. Specifically, the system states on the nth
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Figure 7.18: Comparison of stability statements

cycle, xn, satisfy the following inequality:

xTn · P · xn ≤ (1− γ)n · α (7.42)

Essentially, the above inequality defines a sequence of ellipsoids in the state space

that bounds the state trajectories of the switching linear model, and is plotted in Fig.

7.18. In the same figure, a sequence of polytopes that bounds the state trajectories

of the LPV model is also plotted. The nominal firing zone is the area enclosed by

the blue solid line (shown in every subplot as a reference), which is chosen to have

a similar size to the initial ellipsoid shown in the first subplot. The sequence of
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Figure 7.19: θ50 bounds: switching linear model vs. LPV model

polytopes defined by the black dashed lines shows how the state trajectories of the

LPV model converge.

As shown in Fig. 7.18, the convergence rates of the oxygen state with the two

approaches are very similar for all cycles. This is because the oxygen dynamics

show very little change over the state space, and across the two models (the oxygen

dynamics are dictated by the fact that fifty to sixty percent of the exhaust is trapped

in recompression HCCI).

The convergence of the temperature state first shows a similar rate on Cycle 1

for the two approaches, which is evident in the size of the ellipsoid and polytope in

the “temperature state direction” in the second subplot of Fig. 7.18. However, the

LPV model shows a much faster temperature convergence on Cycle 2 and thereafter.

This is because the polytope for Cycle 1 is roughly within the range of the “sweet

spot” region, and the recursive algorithm concludes that the temperature dynamics

are strongly converging there. On the other hand, the SDP in (5.25) finds a single

Lyapunov function and dissipation rate, γ, that works for all three local linearized

models. Therefore, it is restricted by the slowest temperature convergence rate of the
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three local models. In general, the ellipsoid shrinks slower than the polytopes in the

“temperature state direction” in Fig. 7.18.

The output equation of the nonlinear model can be further applied to the sequence

of ellipsoids and polytopes shown in Fig. 7.18 to give two sets of θ50 bounds for the

switching linear model and LPV model, respectively. These θ50 bounds are shown

in Fig. 7.19. Since the recursive algorithm generally concludes a faster temperature

convergence, it is not surprising to see that the θ50 bounds of the LPV model shrinks

much more quickly compared to those of the switching linear model.

7.5 Conclusion

In this chapter, a stability algorithm is presented to show the convergence of the

two thermo-chemical conditions captured by the LPV model, i.e., oxygen content

and temperature at 300 CAD. This algorithm relies on the “part linear and part

bowl-shaped” structure of the LPV model. Essentially, the bowl-shaped combustion

temperature map translates to the convexity of the state propagation equations and

is exploited to make the proposed stability algorithm possible. Furthermore, this

approach is readily generalizable to include model uncertainties and establish robust-

ness statements of recompression HCCI. In the robustness analysis, the convexity of

the combustion temperature map is relaxed and the system matrices can be affinely

dependent on a set of varying parameters. Using this robustness analysis tool, the

θ50 bounds corresponding to the steady-state invariant sets relate reasonably well to

the test bed data. This is further evidence that the LPV model indeed captures the

key characteristics of recompression HCCI, and that the robustness statements are

sufficiently tight to be useful in practice.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

Internal combustion engines are expected to continue dominating the ground trans-

portation sector in the near future. This thesis discusses two technologies that can

improve the efficiency and pollution of IC engines: an electro-hydraulic valve system

and homogeneous charge compression ignition. However, each of them poses some

challenges in controls. For the EHVS, the response time delay and the nonlinear dy-

namics hinders the closed-loop tracking performance. For HCCI, combustion timing

control and robustness analyses are crucial as HCCI lacks explicit ignition triggers

and is sensitive to the in-cylinder thermo-chemical conditions.

In Chapter 2, system identification techniques are applied to the EHVS and the

resulting ETFE shows that a third-order linear model with input delay can be used to

approximate the system dynamics. Two model-based feedback controllers are com-

pared in experiments and both of them cannot achieve as accurate position control

as when using a mechanical cam. Fundamentally, the response time delay limits

the achievable closed-loop bandwidth which translates to inadequate tracking perfor-

mance. To address this problem, a repetitive controller is formulated. This controller

generates a feedforward input trajectory adaptively to augment the feedback con-

troller. The combined control law achieves excellent tracking performance in experi-

ments under various operating conditions. The proposed control framework is stable

157
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in both experiments and a stability analysis. Finally, a steady-state variance analysis

on the mean tracking error is presented that can be used to examine the effect of

valve position sensor noise on the presented control law.

Starting from Chapter 3, this thesis shifts its focus to recompression HCCI. In

Chapter 3, the single-zone, nonlinear model developed by Ravi et al. [38] is first sum-

marized, since it serves as a stepping stone for the work presented in this thesis. This

nonlinear model captures the cycle-to-cycle propagation of the in-cylinder oxygen con-

tent and temperature, and defines a discrete-time two-state nonlinear model. In Chap-

ter 4, two sets of open-loop combustion timing data from the testbed demonstrate that

the cycle-to-cycle dynamics of recompression HCCI can change dramatically around

different operating points. This further complicates the two main challenges in con-

trolling HCCI combustion timing, i.e., the lack of explicit ignition triggers and the

cycle-to-cycle coupling due to reutilizing the exhaust gas. To understand the change

in the combustion timing dynamics, the temperature dynamics of the nonlinear model

is subjected to a graphical analysis. The resulting visualization of the temperature

trajectories reveals three types of qualitative temperature dynamics across a wide

range of ignition phasing: smoothly decaying in the early phasing region, oscillatory

in the late phasing region, and strongly converging in between. With this insight, a

three-region switching linear model is proposed as a minimalist approach of capturing

the qualitative change in system behavior for control purposes.

In Chapter 5, a three-region switching controller is presented based on the switch-

ing linear model. This controller successfully controls the θ50 in a wide range of

conditions. Particularly, the highly oscillatory combustion timing response around

the late phasing operating point shown in the bottom plot of Fig. 4.1 is rendered

usable with the switching controller. Effectively, the permissible operating range of

recompression HCCI is made wider in closed-loop. This chapter further presents

two semi-definite programs to guarantee that the gain-scheduling formulation in the

switching control/model is stable.

Chapter 6 presents a linear parameter varying model with the explicit aim of

providing a tractable platform for stability and robustness analysis of recompression

HCCI . Based on the nonlinear model, this LPV model lumps the key nonlinearity of
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the nonlinear model into two varying parameters and uses linear equations to complete

the state propagation from one cycle to the next. The result is a tremendous reduction

in model complexity compared to the nonlinear model. The LPV is examined in

various numerical examples and agrees well to the nonlinear model in all cases. When

the LPV and the nonlinear model are further compared to the testbed data, the results

show that the day-to-day variation of the testbed exceeds the difference between the

two models. As a result, basing the stability and robustness analysis on the LPV

model is essentially equivalent to using the nonlinear model.

In Chapter 7, a recursive stability algorithm is first presented to establish the

convergence of the state trajectories of the LPV model. This stability algorithm

takes advantage of the “bowl-shaped” relationship between the model states and

the exhaust temperature, the varying parameter that summarizes the dominant non-

linearity in recompression HCCI. When the “bowl-shaped” relationship is formally

characterized as a convex function, the problem of finding invariant sets can be solved

very efficiently with the proposed recursive algorithm. This approach can be further

generalized to include model uncertainties and becomes a tool for analyzing the ro-

bustness properties of HCCI, which, to the best of the author’s knowledge, has not

been reported yet in previous work. It is also shown that the robustness statements

generated by the proposed algorithm relate reasonably well to the testbed data in

both open and closed-loop.

8.2 Future Work

The repetitive controller shown in Chapter 2 shows excellent tracking performance in

steady state, but it does take some finite time for the controller to converge to a new

input trajectory when a different valve profile is switched. One possibility to address

this is hinted by Equation (2.15), given again below:

y(k) = T1 · ydes + T2 · u(k)rep
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Considering the first engine cycle, cycle 0, if perfect tracking is to be achieved, then

the following condition holds: y(0) = ydes. Substituting this condition into Equation

(2.15) gives:

ydes = T1 · ydes + T2 · u(0)rep

Rearranging the above gives:

(I − T1) · ydes = T2 · u(0)rep

Therefore, if the square matrix T2 is invertible, it seems that one can obtain an

educated guess on the initial repetitive control input trajectory, u(0)rep, which can po-

tentially make the repetitive controller converge faster.

In Chapter 4 and 5, the EVC is the only input that can control combustion tim-

ing. Since fully flexible variable valve actuation is generally considered too costly for

production engines, it would be interesting to see if the three-region switching con-

trol/model framework can be generalized to include other more production-friendly

inputs such as pilot injection timing and fuel quantity. Furthermore, the framework

outlined in these two chapters is also generalizable to include more model regions

than the three presented. It should not be surprising that increasing the model re-

gions can further improve control performance. However, further experimental study

is required to see if the incremental gain in performance justifies the increase in con-

troller complexity. Lastly, the feedback control gain for the sweet spot region shown

in Equation (5.4) is close to zero, suggesting that there is an operating region of re-

compression HCCI where combustion timing can be reliably controlled in open loop.

This idea can be verified in experiments by setting the feedback gain of the sweet

spot region to zero, while retaining the feed-forward control action.

Chapter 6 shows that the varying parameter, T420 (the exhaust temperature),

summarizes the dominant nonlinearity in recompression HCCI and influences the

states on the next engine cycle linearly. If this varying parameter can be estimated,

it should be possible to use it as a feedback signal and design a linear feedback

controller based on T420 (instead of the linear state feedback controllers in Chapter

5). This can potentially lead to an elegant, static linear feedback implementation
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that works across a wide operating range.

Chapter 6 also shows that the LPV model can capture the effect of environmental

parameters such as intake manifold pressure, intake air temperature and cylinder wall

temperature on the two states by updating the linearizations of the breathing stage

on a cycle-by-cycle basis. The resulting state trajectories follow closely those of the

nonlinear model. While the author is confident that the nonlinear model captures the

qualitative effect of these environmental parameters on the system states, it remains

unclear if their effects make sense quantitatively. Further experimental studies need

to be conducted to verify this. Once the effect of these environmental parameters is

ascertained, the author envisions that the robustness algorithm presented in Chapter

7 can be used to see if recompression HCCI is robust to the range of environmental

conditions that a production engine faces in its lifetime.



Appendix A

Derivation of the Nonlinear Model

Chapter 3 summarizes the equations in each of the seven sub-models of the nonlinear

model. These equations propagate the in-cylinder oxygen content and temperature

from the beginning to the end of a stage, and are derived in this appendix.

Stage 1: Polytropic compression from 300 CAD to ignition

The end of this stage is the ignition point defined by the Arrhenius reaction rate

model shown in Equation (3.2). Once the ignition timing is determined, the cylinder

volume at the start of combustion, Vign, is known. The pressure propagation during

this stage is assumed to follow a polytropic compression process, i.e.,

pθs · V κ1
θs

= pign · V κ1
ign (A.1)

The parameter, κ1, is the polytropic exponent during this stage and is assumed

constant. In the rest of the model stages, a similar convention is adopted, i.e., κi

is the polytropic exponent for Stage i. By using the ideal gas law, and assuming

a constant total amount of gas in the cylinder, the temperature propagation during
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this stage can be derived:

pθs · V κ1
θs

= pign · V κ1
ign

Tθs ·R · nθs
Vθs

· V κ1
θs

=
Tign ·R · nign

Vign
· V κ1

ign

Tθs · V κ1−1
θs

= Tign · V κ1−1
ign

Rearranging terms give:

Tign = Tθs ·
(
Vθs
Vign

)κ1−1

which gives the result shown in Equation (3.6) as desired.

The total amount of oxygen content in the cylinder during this stage is assumed

constant, i.e.,

nO2
ign = nO2

θs

Stage 2: Constant-duration combustion from ignition to end of combustion

Combustion is modelled as a two-step process with a constant duration. In the

first step, the temperature at the ignition point, Tign, is propagated to the end of

combustion point assuming a polytropic process (without any energy addition from

fuel oxidation):

T
′

eoc = Tign ·
(
Vign
Veoc

)κ2−1
(A.2)

In the above equation, the in-cylinder temperature is first propagated to an inter-

mediate temperature, T
′
eoc, in this two-step combustion model. In the second step,

this intermediate temperature is further related to the actual Teoc by assuming an

instantaneous energy conversion from fuel oxidation at the end of combustion point.
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Gasoline is assumed to have the formula C7H13. The stoichiometric combustion re-

action can be expressed as:

C7H13 + 10.25 ·O2 → 7 · CO2 + 6.5 ·H2O (A.3)

By assuming a lean mixture typical in HCCI, the reaction starting with nfign moles of

gasoline and nO2
ign moles of oxygen can be written as:

nfign · C7H13 + nO2
ign ·O2 → 7 · nfign · CO2 + 6.5 · nfign ·H2O +(nO2

ign − 10.25 · nfign) ·O2

Note that the total number of moles of gas in the cylinder is increased by an amount of

2.25 ·nfign after the combustion. Since the energy conversion is assumed instantaneous

at constant cylinder volume, there is no p ·dV work during the reaction. The reaction

is modelled as a simple energy addition without describing the chemical changes in

the cylinder. As a result, applying the first law to the reaction gives:

Ueoc = U
′

eoc +Qcomb (A.4)

where U
′
eoc and Ueoc are the total internal energy of the in-cylinder gas immediately

before and after the reaction, and Qcomb is the amount of energy addition to the

in-cylinder gas. This energy addition is a function of the energy release from fuel

oxidation as well as the heat transfer to the cylinder wall:

Qcomb = Qer −Qht

For the purpose of this first law analysis, the energy release, Qer, is calculated based

on the lower heating value of the fuel:

Qer = LHVf · nfign (A.5)
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The amount of heat transfer, Qht, is modelled as a fixed percentage of the lower

heating value of the fuel:

Qht = ε · LHVf · nfign (A.6)

where ε is a heat transfer parameter to be calibrated to the engine testbed. Combining

Equation (A.4), (A.5) and (A.6) gives:

Ueoc = U
′

eoc +Qcomb

= U
′

eoc + (1− ε) · LHVf · nfign (A.7)

Assuming that all the cylinder constituents other than the fuel have the same specific

heat, Cv, and that the fuel has the the specific heat of Cv,f , Equation (A.7) can be

written as:

neoc · Cv ·
(
Teoc − T amb

)

=
[(
n
′

eoc − nfign
)
· Cv + nfign · Cv,f

]
·
(
T
′

eoc − T amb
)

+ (1− ε) · LHVf · nfign
(A.8)

The ambient temperature, T amb, is the reference temperature in this first law analysis.

The total number of moles of gas immediately before combustion, n
′
eoc, is assumed to

be equal to the amount of gas at the ignition and state definition point, i.e.,

n
′

eoc = nign = nθs (A.9)

As pointed out previously, the total amount of gas after combustion is increased by

an amount of 2.25 · nfign. Furthermore, the amount of fuel at the ignition point, nfign,

is the same at the state definition point. These give:

neoc = n
′

eoc + 2.25 · nfign
= nθs + 2.25 · nfθs (A.10)
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Combining Equation (A.8), (A.9) and (A.10) gives:

(
nθs + 2.25 · nfθs

)
· Cv ·

(
Teoc − T amb

)

=
[(
nθs − nfθs

)
· Cv + nfθs · Cv,f

]
·
(
T
′

eoc − T amb
)

+ (1− ε) · LHVf · nfθs
(A.11)

Note that the term,
(
nθs − nfθs

)
· Cv + nfθs · Cv,f , in the above equation represents

the product of the average specific heat and total amount of gas immediately before

the reaction. Similarly, the term
(
nθs + 2.25 · nfθs

)
·Cv represents the product of the

specific heat and total amount of gas after the reaction. Rearranging and solving for

Teoc gives:

Teoc =
Cv · nθs + (Cv,f − Cv) · nfθs
Cv ·

(
nθs + 2.25 · nfθs

) · T ′eoc

+
(1− ε) · LHVf + (3.25 · Cv − Cv,f ) · T amb

Cv ·
(
nθs + 2.25 · nfθs

) · nfθs (A.12)

A simplification can be made in Equation (A.12). Since nfθs � nθs , it is reasonable to

assume that the product of the specific heat and total amount of gas does not change

significantly before and after the combustion, i.e.,

Cv · nθs + (Cv,f − Cv) · nfθs u Cv ·
(
nθs + 2.25 · nfθs

)

Using this simplification, Equation (A.12) can be combined with Equation (A.2) to

give:

Teoc =T
′

eoc +
(1− ε) · LHVf + (3.25 · Cv − Cv,f ) · T amb

Cv · nθs + (Cv,f − Cv) · nfθs

=Tign ·
(
Vign
Veoc

)κ2−1
+

(1− ε) · LHVf + (3.25 · Cv − Cv,f ) · T amb
Cv · nθs + (Cv,f − Cv) · nfθs

(A.13)

which is the same results shown in Equation (3.8).



APPENDIX A. DERIVATION OF THE NONLINEAR MODEL 167

Since a lean mixture is assumed, the leftover oxygen content at the end of com-

bustion point is calculated as:

nO2
eoc = nO2

ign − λstoich · nfθs

where λstoich = 10.25 is the stoichiometric oxygen-fuel ratio as observed in Reaction

(A.3).

Stage 3: Polytropic expansion from EOC to EVO

The post-combustion expansion is assumed to be a polytropic process, as a result,

the temperature propagation during this stage is:

Tevo = Teoc ·
(
Veoc
Vevo

)κ3−1

The oxygen content during this stage is unchanged, i.e.,

nO2
evo = nO2

eoc

Stage 4: Polytropic blowdown and exhaust from EVO to EVC

The exhaust process is modelled as a two-step process as well. The first step is

a polytropic blowdown process where the in-cylinder gas expands to the exhaust

manifold pressure, pem. Along with the ideal gas law, the temperature propagation

during this stage can be obtained:

Tevc = Tevo ·
(
pem

pevo

)1− 1
κ4

(A.14)

After the blowdown, the amount of gas trapped in the cylinder at EVC, nevc, can be

calculated based on the ideal gas law with the assumption that the pressure inside

the cylinder is equal to the exhaust manifold pressure.

nevc =
pem · Vevc
R · Tevc
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The trap ratio, ζ, defined in Chapter 6, i.e., the ratio between the amount of gas at

EVC and EVO, can be calculated as:

ζ =
nevc
nevo

=
pem · Vevc

R · Tevc · nevo
(A.15)

The amount of oxygen at EVC is, therefore, given as follows:

nO2
evc = ζ · nO2

evo

which is the same relationship given in Equation (3.11).

Stage 5: Recompression from EVC to IVO

The total amount of gas is assumed constant during this stage.

nivo = nevc

This is because the engine valves are closed during this stage and the quantity of fuel

injection, which typically occurs during recompression, is negligible compared to the

total amount of gas in the cylinder.

Assuming no net work is done on the in-cylinder gas, the first law analysis during

recompression is expressed as:

Uivo = Uevc −Qrecomp (A.16)

where Uevc and Uivo are the total internal energy of the in-cylinder gas at the be-

ginning and end of recompression, and Qrecomp is the amount of heat transfer during

this stage. As a simple construct to capture the wall temperature effect, Qrecomp is

modelled as proportional to the difference between the wall temperature and average

gas temperature during recompression.

Qrecomp = h ·
(
T avg − Twall

)
(A.17)
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where h is a lumped heat transfer parameter that can be adjusted to capture the

testbed behavior. The average gas temperature, T avg, is modelled as the arithmetic

mean of the gas temperature at EVC and the isentropic gas temperature at TDC.

T avg =
1

2
·
(
Tevc + Tevc ·

(
Vevc
V tdc

)γ−1)
(A.18)

where γ is the specific heat ration of the in-cylinder gas.

Combining Equation (A.16), (A.17) and (A.18) gives:

nivo · Cv ·
(
Tivo − T amb

)
=nevc · Cv ·

(
Tevc − T amb

)

− h ·
(

1

2
·
(
Tevc + Tevc ·

(
Vevc
V tdc

)γ−1)
− Twall

)

Since nivo = nevc, rearranging terms in the equation above gives:

Tivo = Tevc −
h

nivo · Cv
·
(

1

2
· Tevc ·

(
1 +

(
Vevc
V tdc

)γ−1)
− Twall

)

which is the results shown in Equation (3.14).

The oxygen content during this stage is assumed constant, i.e.,

nO2
ivo = nO2

evc

Stage 6: Adiabatic induction from IVO to IVC

Fresh air is inducted into the cylinder during this stage at a constant pressure and

temperature (assumed to be the intake manifold pressure, pim, and temperature,

T im, respectively). The inducted air is assumed to mix with the cylinder constituents

instantaneously at IVC. Assuming no other work interaction and heat transfer takes

place, the increase in the total internal energy inside the cylinder is equal to the

enthalpy in-flow of fresh air. This gives:

nivc · Cv · Tivc − nivo · Cv · Tivo = nind · Cp · T im (A.19)
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The left side of the above equation represents the change in the total internal energy

in the cylinder, and the right side represents the enthalpy inflow of fresh air.

Assuming the in-cylinder pressure at IVC is equal to the intake manifold pressure

gives the relationship of nivc · Tivc = pim·Vivc
R

. Substituting this relationship into

Equation (A.19) gives:

Cv ·
pim · Vivc

R
− nivo · Cv · Tivo = nind · Cp · T im (A.20)

Rearranging terms and solving for nind gives the amount of air inducted:

nind =
Cv

Cp ·R · T im
·
(
pim · Vivc − nivo ·R · Tivo

)
(A.21)

Using the ideal gas law, the in-cylinder temperature at IVC, Tivc, can be calculated

based on nind:

Tivc =
pim · Vivc

R · (nivo + nind)
(A.22)

The amount of oxygen in the cylinder at IVC is the sum of the oxygen content at

IVO and the oxygen content in the inducted air:

nO2
ivc = nO2

ivo + χ · nind (A.23)

where χ is the molar concentration of oxygen of air (around 0.2).

Stage 7: Polytropic compression from IVC to θs

During this stage, the temperature of the in-cylinder gas is propagated by a polytropic

process. This gives:

Tθs(k + 1) = Tivc(k) ·
(
Vivc(k)

Vθs

)κ7−1

Note the cycle index k in the above equation. It signifies that the temperature

propagation has completed a full cycle to reach the state definition point on the next
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engine cycle.

The oxygen content does not change during this stage, i.e.,

nO2
θs

(k + 1) = nO2
ivc(k)



Appendix B

Re-Normalization of the Linearized

Models

In the following example, two linearizations are re-normalized to arrive at an unified

state, input and output description. The case with three linearizations are straight

forward given this example. Consider the following two linearized models:

x̃1(k + 1) = Ã1 · x̃1(k) + B̃1 · ũ1(k) , ỹ1(k) = C̃1 · x̃1(k) (B.1)

and

x̃2(k + 1) = Ã2 · x̃2(k) + B̃2 · ũ2(k) , ỹ2(k) = C̃2 · x̃2(k) (B.2)

Note that the x̃1 and x̃2 are normalized around different steady state oxygen concen-

tration and temperature. Specifically:

x̃1 =




n
O2
θs
−nO2

θs,1

n
O2
θs,1

Tθs−Tθs,1
Tθs,1


 and x̃2 =




n
O2
θs
−nO2

θs,2

n
O2
θs,2

Tθs−Tθs,2
Tθs,2


 (B.3)

where nO2
θs,1

, Tθs,1 are the steady-state oxygen content and temperature for the first

linearized system and nO2
θs,2

, Tθs,2 are the steady-state values for the second linearized
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system. To express x̃2 in terms of x̃1, the following transformation can be used:

x̃2 = α−1 · (x̃1 − β) (B.4)

where

α =

[
O2,2

O2,1
0

0 T2
T1

]
, β =

[
O2,2−O2,1

O2,1

T2−T1
T1

]
(B.5)

Since the two linear models have different steady state volume at EVC and different

steady state θ50, similar relationships between uk and ũk and between yk and ỹk need

to be established as well:

ũ2 = α−1u · (ũ1 − βu) (B.6)

ỹ2 = α−1y · (ỹ2 − βy) (B.7)

where

αu =
VEV C,2
VEV C,1

, βu =
VEV C,2 − VEV C,1

VEV C,1
(B.8)

αy =
θ50,2
θ50,1

, βy =
θ50,2 − θ50,1

θ50,1
(B.9)

The second linear system can be expressed using x̃1, ũ1 and ỹ1 instead of x̃2, ũ2 and

ỹ2:

x̃1(k) = α · Ã2 · α−1 · x̃1(k) + α · B̃2 · α−1u · ũ1(k)

+α · (I − Ã2) · α−1 · β − α · B̃2 · α−1u · βu
ỹ1(k) = αy · C̃2 · α−1 · x̃1 + βy − αy · C̃2 · α−1 · β (B.10)
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Introducing the following definitions to simplify the notations:

A2 = α · Ã2 · α−1, B2 = α · B̃2 · α−1u , C2 = αy · C̃2 · α−1

d2 = α · (I − Ã2) · α−1 · β − α · B̃2 · α−1u · βu
e2 = βy − αy · C̃2 · α−1 · β (B.11)

The second linear system becomes:

x̃1(k) = A2 · x̃1(k) +B2 · ũ1(k) + d2

ỹ1(k) = C2 · x̃1(k) + e2 (B.12)

(B.4) ∼ (B.12) can be generalized to re-normalize any number of linearized systems.



Appendix C

Proof of Theorem 7.3

The lower bound on oxygen content on the next cycle is given in Theorem 7.3,

which is stated again and proven below.

Theorem 7.3 Suppose J∗n is the optimal objective of the linear program (LP) shown

in (C.1), with xk and rk as the optimization variables, then nlk+1 can be chosen as

nlk+1 = J∗n + eT1B1 · uk + eT1 d

minimize eT1A · xk + eT1B2 · rk (C.1)

subject to :

xk ∈ Φk

rk ≥ T s,i420 + qi
T · (xk − xs,i), ∀i = 1, ...,m

Proof :

Suppose that the LP in (C.1) is sovled with the optimizers x∗k and r∗k with the optimal

objective J∗n. This means that any choice of xk of rk that satisfy the constraints shown

in the above LP cannot yield a objective value lower than J∗n.

175



APPENDIX C. PROOF OF THEOREM 7.3 176

It is obvious that the following condition holds :

J∗n = eT1A · x∗k + eT1B2 · r∗k
x∗k ∈ Φk

r∗k ≥ max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

(C.2)

These come directly from the LP problem statements. The last condition can be

further refined:

r∗k = max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

(C.3)

Condition (C.3) can be proven with the following argument. Suppose (C.2) is a strict

inequality, i.e.

r∗k > max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

Since eT1B2 is always positive, there always exists a z∗ and V ∗ such that

r∗k > z∗ ≥ max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

and

J∗n > V ∗ = eT1A · x∗k + eT1B2 · z∗

Therefore, J∗n cannot be the optimal objective value of the optimization problem,

since J∗n > V ∗. This is a contradiction and, as a result, the equality condition in

(C.3) has to be true. Furthermore, the condition below needs to hold:

J∗n = eT1A · x∗k + eT1B2 · r∗k
= eT1A · x∗k + eT1B2 · max

i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

≤ eT1A · xk + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (xk − xs,i)
}
, ∀xk ∈ Φk (C.4)



APPENDIX C. PROOF OF THEOREM 7.3 177

The second equality in the above comes from condition (C.3) that was just proved.

If condition (C.4) were not true, then there exists a s∗ ∈ Φk such that

J∗n = eT1A · x∗k + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

> eT1A · s∗ + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (s∗ − xs,i)
}

Choosing the optimizer xk and T420,k as below, therefore, leads to an objective value

lower than J∗n, which is again a contradiction.

xk = s∗

rk = max
i=1,...,m

{
T s,i420 + qi

T · (s∗ − xs,i)
}

Consequently, it can be concluded that condition (C.4) is true. Finally, the following

inequality holds:

eT1A · xk + eT1B2 · gcomb(xk)
≥ eT1A · xk + eT1B2 · max

i=1,...,m

{
T s,i420 + qi

T · (xk − xs,i)
}

(C.5)

This is because eT1B2 is positive and the point-wise maximum of the hyperplanes is a

global lower bound for gcomb. Combining condition (C.3), (C.4) and (C.5) gives

nlk+1 = J∗n + eT1B1 · uk + eT1 d

= eT1A · x∗k + eT1B1 · uk + eT1B2 · r∗k + eT1 d

= eT1A · x∗k + eT1B1 · uk + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (x∗k − xs,i)
}

+ eT1 d

≤ eT1A · xk + eT1B1 · uk + eT1B2 · max
i=1,...,m

{
T s,i420 + qi

T · (xk − xs,i)
}

+ eT1 d, ∀xk ∈ Φk

≤ eT1A · xk + eT1B1 · u0 + eT1B2 · gcomb(xk) + eT1 d, ∀xk ∈ Φk

= eT1 · xk+1

The above shows that nlk+1 = J∗n + eT1B1 · uk + eT1 d is indeed a valid choice as a lower

bound on oxygen content on the next cycle and completes the proof.2



APPENDIX C. PROOF OF THEOREM 7.3 178

With the knowledge of CT ·B2 < 0, Theorem 7.4 can be proven in a similar manner.
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