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Abstract

Many types of vehicle control systems can conceivably be developed to help drivers

maintain stability, avoid roll-over, and customize handling characteristics. A lack of

state and parameter information, however, presents a major obstacle. This disserta-

tion presents state and parameter estimation methods using the Global Positioning

System (GPS) for vehicle dynamics control. It begins by explaining basic vehicle

dynamic models which are commonly used for vehicle dynamics control. The disser-

tation then demonstrates a method of estimating several key vehicle states – sideslip

angle, longitudinal velocity, roll and grade – by combining automotive grade inertial

sensors with a GPS receiver. Kinematic estimators that are independent of uncertain

vehicle parameters integrate the inertial sensors with GPS to provide high update

estimates of the vehicle states and the sensor biases. With a two-antenna GPS sys-

tem, the effects of pitch and roll on the measurements can be quantified and are

demonstrated to be quite significant in sideslip angle estimation. Using the same

GPS system, a new method that compensates for roll and pitch effects is developed

to improve the accuracy of the vehicle state and sensor bias estimates. In addition,

calibration procedures for the sensitivity and cross-coupling of inertial sensors are

provided to reduce measurement error further.

To verify that the estimation scheme provides appropriate estimates of the vehicle

states, this dissertation shows that the state estimates from real experiments compare

well with the results from calibrated models. The performance of the estimation

scheme is also verified by statistical analysis. Results from the statistical analysis

match predictions from the kinematic estimators. Since the proposed estimation

scheme is based on a cascade estimator structure, the convergence of the cascade
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estimator structure is also proven. As an application, the estimated vehicle states

are used to virtually modify a vehicle’s handling characteristics through a full state

feedback controller. Results from this application show that the estimated states are

accurate and clean enough to be used in vehicle dynamics control systems without

additional filtering.

The dissertation then examines parameter estimation for vehicle dynamic mod-

els. Several important vehicle parameters such as tire cornering stiffness, understeer

gradient, and roll stiffness, can be estimated using the estimated vehicle states. Exper-

imental results show that the parameter estimates from proposed methods converge

to the known values. Finally, the dissertation presents a new method for identifying

road bank and suspension roll separately using a disturbance observer and a vehicle

dynamic model. Based on the estimated vehicle parameters, a dynamic model, which

includes suspension roll as a state and road bank as a disturbance, is first introduced.

A disturbance observer is then implemented from the vehicle model using estimated

vehicle states. Experimental results verify that the estimation scheme gives separate

estimates of the suspension roll and road bank angles. The results of this work can

improve the performance of stability control systems and enable a number of future

systems.
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Chapter 1

Introduction

Automobiles are indispensable in our modern society, and vehicle safety is conse-

quently very important in our everyday life. In the past few decades, vehicle dynamics

control systems have been developed to improve control and safety of vehicles. Vehicle

dynamics control systems seek to prevent unintended vehicle behavior through active

control and help drivers maintain control of their vehicles. Among them, Anti-lock

Brake Systems (ABS) to prevent wheel lock-up have become common equipment in

production passenger vehicles, and traction control systems are also becoming popu-

lar to prevent the drive wheels from losing grip when accelerating [50]. In addition to

ABS and traction control, many automotive companies have been developing Elec-

tronic Stability Control (ESC) systems to prevent the vehicle from spins, skids, and

rollovers [47, 50]. The main function of electronic stability control is to provide en-

hanced stability and control not only when accelerating and braking but also when

cornering and avoiding obstacles.

During cornering, a stability control system compares a driver’s intended vehicle

motion with the vehicle’s actual behavior. When the stability control system detects

a discrepancy between them, it automatically applies brakes to individual wheels

to bring the movement of the vehicle back in line with the driver’s intention. The

driver’s intention is calculated from the driver’s commanded steering wheel angle and

speed of the vehicle, which can easily be measured using the steering wheel angle

sensor and wheel speed sensors. In order to determine the vehicle’s actual behavior,

1



CHAPTER 1. INTRODUCTION 2

current stability control systems use measurements from a yaw rate gyro and lateral

accelerometer. The yaw rate gyro gives the rotation rate of the vehicle, and the

measured lateral acceleration with the yaw rate gives an indication of vehicle lateral

motion. However, this is only a rough indication since a sliding or skidding vehicle

may not be spinning and thus may have a normal yaw rate. In such cases, the

sideslip angle of the vehicle must be known to determine the vehicle’s lateral motion

in addition to its rotational motion. The vehicle sideslip angle captures the lateral

velocity because it is the angle between the longitudinal axis of the vehicle body and

the direction of the vehicle velocity. Current vehicles, however, are not equipped with

an ability to measure the sideslip angle directly, and this limits the algorithms that

can be incorporated in production systems. The inability to sense vehicle sideslip

angle is the primary challenge in the development of stability control systems [49].

Instead of measuring sideslip angle directly, stability control systems on current

production vehicles estimate sideslip angle for their control purposes. One common

method for estimating sideslip angle is to combine measurements from the yaw rate

gyro and lateral accelerometer [17, 38]. Because the time derivative of sideslip angle

can be expressed in terms of yaw rate and lateral acceleration, sideslip angle can be

estimated by integration of these measurements [16, 47]. Unfortunately, measure-

ments from these sensors contain bias as well as electrical noise, and can drift with

temperature changes. In addition, the lateral accelerometer cannot distinguish be-

tween the acceleration from lateral motion of the vehicle and the acceleration due

to gravity during vehicle roll motion. As a result, the integration can accumulate

error from sensor noise and vehicle roll. These errors limit the effectiveness of current

stability control systems, and improvements in estimating sideslip angle will enable

the vehicle control systems of the future.

Since the vehicle sideslip angle is the difference between the vehicle yaw angle

and the direction of the velocity, the sideslip angle can be calculated if both the

attitude and velocity of the vehicle are known. Inertial Navigation System (INS)

could provide these values by integrating gyro measurements to get the attitude

and integrating accelerometer measurements with gravity compensation to get the

velocity [5, 11, 13, 20]. Historically, INS has been commonly used in aircraft and
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missile applications. Since the first INS system was used in the German V1 and V2

missiles in World War II, many aircraft and missile applications have used INS to

keep track of position, velocity, and attitude for navigation purposes [32]. A typical

inertial navigation system uses a combination of accelerometers and gyros, and solves

a large set (usually 6 DOF) of differential equations to convert these measurements

into estimates of position, velocity and attitude [11]. However, integration of inertial

measurements is limited by the drift caused by sensor bias and sensitivity as small

errors in measurement are integrated into progressively larger errors in attitude and

velocity. In general, sensor quality (grade) is judged according to this drift rate. To

estimate the vehicle yaw angle over long periods of time with enough accuracy for

sideslip angle determination using INS alone would require a tactical or navigation

grade system with a 1 deg/hr drift rate or better. Such accurate systems are usually

implemented using a wheel (called the rotor) spinning at high speed on a multi-gimbal

structure. The speed of the rotor is precisely controlled by an electric motor, and

the mounting structure should be manufactured with extremely high precision. With

a cost of $10,000 or more [11, 21], such an INS system is much too expensive for

automotive applications.

Instead, lower-cost MEMS (Micro-Electro-Mechanical System) gyros can be used.

A typical MEMS gyro uses an electrostatically driven, vibrating silicon mass. In re-

sponse to an angular rate, the mass is deflected by the Coriolis force. This deflection

is sensed capacitively, and the amplitude is proportional to the angular rate. Even

though it has a cost advantage, this measurement method is sensitive to temperature

changes and drifts with them [15]. As a result, using a MEMS sensor alone is not

sufficient to estimate the vehicle yaw and sideslip angle over long periods of time.

However, integration with attitude and velocity measurements from the Global Posi-

tioning System (GPS) can effectively negate these drift effects and enable the use of

these sensors.
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Figure 1.1: GPS Constellation (Illustration: The Aerospace Corporation)

1.1 Global Positioning System

The Global Positioning System (GPS) is a satellite-based navigation system consisting

of a constellation of 24 satellites. The U.S. military developed and implemented this

satellite network as a military navigation system, but in the 1980s, the government

made the system available for civilian use. GPS satellites circle the earth twice a day

at an altitude of about 20,000 km in a very precise orbit, continuously monitored

by ground stations located worldwide. The satellites transmit information on radio

signals to earth, and GPS receivers interpret this information. Then, the GPS receiver

calculates the travel time of signals by comparing the time a signal was transmitted

by a satellite with the time it was received. The receiver multiplies this time by the

speed of radio waves to determine how far the signal traveled. With this distance of
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travel, the receiver uses trilateration to calculate the receiver’s exact position. As a

result, a standard GPS receiver can provide position information with about 10 meter

accuracy [25, 36].

Even though standard GPS position information has about 10 meter accuracy,

GPS velocity information can be much more accurate by measuring the Doppler

shifts of GPS carrier waves as shown in Fig. 1.2. The satellites transmit radio carrier

Doppler Effect Compressed
Wave

Carrier Arriving
from Satellite

(Doppler Shifted)

GPS Carrier Wave L1 = 1572.42 MHz

Stretched
Wave

Direction of Car

(Adapted from http://spaceinfo.jaxa.jp/note/shikumi/e/shi10_e.html and http://www.btinternet.com/~j.doyle/SR/Sr6/sr6.htm)

As the car approaches the waves are compressed and the frequency increases.
As it recedes the waves are stretched and the frequency decreases.

Figure 1.2: GPS Carrier Wave and Doppler Effect

waves at the L1 frequency (1575.42 MHz) for civil users. However, the frequency of

the signal received by a GPS receiver is changed because of relative velocity between

the satellites and receiver. This change is called the Doppler effect, and the difference

between the frequency of the received signal and the original frequency at the source

is called the Doppler shift. The accurate velocity of the receiver can be calculated

by measuring the Doppler shifts in the incoming carrier waves. A GPS receiver can

provide velocity information with accuracy of 3 cm/s (1σ, horizontal velocity) and

6 cm/s (vertical velocity) even without differential corrections [6].

In addition to velocity, attitude can be determined very accurately with multiple

GPS antennas. Figure 1.3 shows the schematic of attitude determination. When the

baseline length, b, is known, the attitude, θ, can be determined by measuring the

range difference, ∆r. The range difference, ∆r, can be accurately measured by the
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Primary
Antenna

Secondary
Antenna

GPS Satellite

Line of Sight

b

θ

∆r

Figure 1.3: GPS Attitude Determination

phase difference of the carrier waves received at two antennas. Since a GPS receiver

can measure L1 carrier phase with great precision (0.005 cycle or 1 mm) [36], GPS

attitude is available with accuracy of 0.25 deg (1σ with 2 m baseline length) using the

phase difference from carrier phase measurements [34]. One difficult problem involved

in using the carrier phase measurements to determine attitude is the resolution of the

integer ambiguity inherent in the carrier phase measurements. When the separation

of two antennas exceeds λ/2 (λ = 19 cm, L1 carrier wavelength), relative phase is not

sufficient to measure the range difference, ∆r, and the integer number of cycles must

also be determined. This integer ambiguity must be resolved before the measurements

can be used for attitude determination. Multiple-antenna GPS systems have been

deployed for automated farming and marine navigation [34, 39]

1.2 GPS/INS Integration for Vehicle Dynamics

The integration of INS sensors with GPS has been given much attention, especially

in aircraft applications, due to the complementary nature of the individual systems.



CHAPTER 1. INTRODUCTION 7

GPS measurements are stable but subject to a fairly low update rate (1-10 Hz) and

signal blockage while inertial sensor measurements are continuously available but

suffer from long term drift.

GPS/INS integration is commonly implemented using Kalman filters. Schmidt

discussed Kalman filters and computations for a gimballed INS and a strap-down

INS [43]. Bar-Itzhack et al. presented a control theoretical approach to GPS/INS

integration using Kalman filters for navigation [4]. Randle et al. used Kalman filters

to integrate GPS with low cost INS sensors for both flight and land vehicle naviga-

tion [40]. Grewal et al. discussed the detailed working principles of the INS, GPS

and Kalman filtering in their book [25]. Recently, Gautier designed the GPS/INS

generalized evaluation tool (GIGET) using Kalman filters for navigation systems and

tested it on an unmanned air vehicle [19].

Most of the previous GPS/INS integration work has focused on the navigation and

dead reckoning of vehicles [51]. Da et al. and Gebre-Eaziabher et al. used INS sensor

measurements to update position estimates between GPS measurement updates for

aircraft navigation [13, 20]. Similarly, Berman et al. and Masson et al. utilized INS

sensors to dead reckon during short GPS outages for aviation applications [5, 33].

Cannon et al. integrated low cost INS sensors with GPS to provide navigation capa-

bility to bridge GPS outages for tens of seconds, and the robustness of the system

was studied for both airborne and ground tests [9]. Abbott et al. and Schonberg et

al. investigated GPS/INS integration for land vehicle navigation and dead reckoning

systems [1, 44].

Spurred by the increase in GPS systems in cars, Bevly et al. developed a method

of estimating vehicle sideslip by integrating inertial sensors from a stability control

system with velocity information from a single antenna GPS receiver using a planar

vehicle model and Kalman filters [6, 7]. As discussed earlier, one advantage of using

GPS velocity (or attitude) information for sideslip angle estimation is its accuracy.

GPS attitude and velocity are considerably more accurate than position. While the

standard GPS can provide absolute position within about a 10 meter radius, GPS

attitude and velocity are available with errors on the order of 0.25 deg (1σ, attitude

with 2 m baseline length), 3 cm/s (1σ, horizontal velocity), and 6 cm/s (vertical
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velocity) even without differential corrections [6, 34].

However, out-of-plane vehicle motions due to roll and pitch could not be taken into

account with the planar model, leaving open questions of system accuracy and the

potential benefits of additional sensing and vehicle modeling. Even though additional

sensing – such as a two-antenna GPS receiver – can help determine out-of-plane vehi-

cle motions, more information is necessary to determine the interaction between the

vehicle and ground. Sensors are usually installed on the vehicle body and therefore

cannot fully explain the vehicle’s motions without additional information from the

sensors on the wheels or suspension of the vehicle. Especially in land vehicle applica-

tions, the interaction between a vehicle and the ground is very important to determine

the vehicle’s behavior. Figure 1.4 shows one example which illustrates that the sen-

sors installed on the vehicle body are not enough to explain the interaction between

the vehicle and ground. In Fig. 1.4, the two vehicles have the same vehicle roll with

GPS Antenna

Road
Vehicle Frame

φr

y
z

φk

Vehicle Body

GPS Antenna

Y

Z

Road

Figure 1.4: Vehicle with/without Roll and Road Bank

respect to the inertial frame, and the GPS thus gives the same roll measurements in

both cases. However, the two vehicles are in very different dynamic situations. The

vehicle on the flat surface will have similar responses to left and right steering, but

the response of the vehicle on the banked surface will be highly dependent on the
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steering direction. Additional vehicle models should be considered to separate these

two cases.

1.3 Vehicle State and Parameter Estimation Using

GPS

This thesis investigates the use of several GPS and inertial sensor configurations

and levels of modeling fidelity in the estimation of vehicle states including sideslip

angle. Unlike previous work, vehicle yaw information is obtained from a two-antenna

GPS system that not only eliminates issues of drift in attitude estimation but also

provides a measurement of the roll angle. Using a two-antenna GPS system, this

thesis investigates the influence of road grade, bank angle, and suspension roll on

GPS-based vehicle sideslip and longitudinal velocity estimates derived from a planar

model. Since roll and grade have a pronounced effect [42, 46, 48], a new method of

estimating several key vehicle states (sideslip angle, longitudinal velocity, yaw, and

roll) and sensor biases is proposed using the two-antenna GPS system in combination

with inertial sensors. The combined system fuses a road grade estimate derived

from GPS velocity [3] and the roll information from the two-antenna system with

an appropriate roll center model of the vehicle since the two antennas are placed

laterally. Comparisons with a calibrated vehicle model show excellent correlation and

the relative constancy of the sensor bias estimates demonstrates that no significant

dynamics are ignored. From a practical standpoint, this thesis also describes a number

of refinements to calibrate sensitivity variation and cross-coupling of inertial sensors.

With multiple-antenna GPS systems currently deployed for automated farming [39]

and under development at automotive price points, a sensing system such as this

could be the key enabling technology for future vehicle dynamics control systems.

From a theoretical standpoint, the convergence of the proposed estimation method

is proved in this thesis, and statistical analysis demonstrates that the performance of

the final system with calibration performs according to the predictions of propagated
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Kalman filter covariances. As an application, it is also shown that the resulting es-

timate is successfully integrated as a state feedback measurement for a steer-by-wire

vehicle to virtually modify the vehicle’s handling characteristics. With the improved

sideslip angle estimate presented in this work, such a system can be easily imple-

mented.

The accurate estimates of the vehicle states are available at a level previously

unavailable and these estimates yield a new opportunity to estimate key vehicle

parameters, such as vehicle mass, tire cornering stiffness, understeer gradient, roll

stiffness, and roll damping coefficient. Once vehicle parameters are precisely esti-

mated, parameterized vehicle dynamics models with properly estimated parameters

can be used for a wide variety of applications including highway automation, vehicle

stability control, and rollover prevention systems [10, 17, 38, 47, 53]. Aiming to pro-

vide parameter estimates precisely enough to be used for most vehicle dynamics and

control problems, this thesis investigates vehicle parameter estimation schemes and

demonstrates experimental results of the estimation schemes.

Furthermore, estimated vehicle parameters together with estimated sensor biases

open the door to estimate vehicle states correctly even when GPS is not available.

Parameterized vehicle models with properly estimated parameters can produce correct

vehicle state estimates using INS sensors calibrated by the sensor bias estimates. This

concept is illustrated in Fig. 1.5. When GPS is available, represented in the left side

of the figure, vehicle parameters and INS sensor biases are estimated as well as vehicle

states. When GPS is not available, represented in the right side, the estimated vehicle

parameters and sensor biases are used as inputs to the estimation process to estimate

vehicle states without help of GPS measurements.

In addition, based on the estimated parameters and states, this thesis presents a

new method for separating road bank and suspension roll angle using a disturbance

observer and a vehicle dynamic model. While a lumped value of road bank and

suspension roll can be measured using a two-antenna GPS system and the lumped

value can be used to compensate the acceleration measurements [41], the separation

of these two angles could be especially beneficial to vehicle rollover warning and

avoidance systems [10, 12, 24]. Since a small lumped value does not necessarily mean
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Figure 1.5: Estimation with/without GPS Availability

a small road bank angle, a vehicle may experience a significant road bank angle even

though the sum of the two angles is small.

Although the suspension roll and road bank angles have similar influences on the

roll and roll rate measurements, they play very different roles in the vehicle dynamics.

While the road bank angle can be treated as a disturbance or unknown input to the

vehicle, the suspension roll angle is a state resulting from the road bank angle and

other inputs, governed by vehicle dynamics. This implies that a parameterized vehicle

dynamic model could conceivably be used to separate the suspension roll and road

bank angles. In this thesis, a dynamic model, which includes suspension roll as a

state and road bank as a disturbance, is introduced. The disturbance observer is

then implemented using the measurements of the sideslip angle, yaw rate, roll rate,

and total roll angle (the sum of road bank and suspension roll angles) from the

GPS/INS system. Using this structure, experimental results demonstrate that road

bank angle and suspension roll can be effectively separated.

1.4 Thesis Contributions

The contributions of this thesis are as follows:

• Developed cascade state estimators for vehicle dynamics control, which system-

atically take care of sensor biases and unwanted effects from roll and pitch,

using a two-antenna GPS receiver.
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• Proved the convergence of the cascade estimators and verified the performance

of the estimators by statistical analysis.

• Demonstrated the applicability of the estimators. Applied the estimated vehi-

cle states as feedback signals to a linear controller, which virtually modifies a

vehicle’s handling characteristics.

• Developed parameter estimation methods for vehicle dynamic models using the

estimated vehicle states, and contrasted the performance of these methods in

several scenarios.

• Developed a vehicle dynamic model with proper treatment of the full 3D kine-

matic property of road bank, and estimated road bank separately from suspen-

sion roll.

1.5 Thesis Outline

Chapter 2 initiates the discussion of vehicle lateral dynamics by explaining funda-

mental concepts and introducing linear tire and vehicle models, which have been

commonly adopted for vehicle dynamics control. The introduced models provide a

basic idea of what states and parameters of a vehicle are important for vehicle dy-

namics control.

Chapter 3 then presents a method of estimating the vehicle states by combining

automotive grade inertial sensors with a two-antenna GPS receiver. Cascade Kine-

matic Kalman filters that are independent of physical vehicle parameters are used to

get high update rate estimates of the vehicle states by integrating the inertial sen-

sors with the GPS receiver. The effects of pitch and roll on the measurements are

compensated to improve the accuracy of the vehicle state and sensor bias estimates.

In addition, the sensitivity and cross-coupling of inertial sensors are systematically

calibrated to reduce measurement error further.

To show that the proposed estimation method is stable and gives appropriate state

estimates for vehicle control purposes, Chapter 4 starts by proving the convergence
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of the cascade filter structure. The performance of the estimation method is then

verified by statistical analysis. Results from the statistical analysis match predictions

from the Kalman filters well. Finally, the estimated vehicle states are used to modify

a vehicle’s handling characteristics through a full state feedback controller, which

implies that the estimation method is applicable to a real-world vehicle controller.

The thesis then moves on to vehicle parameter estimation. Chapter 5 experimen-

tally shows that key vehicle parameters, such as tire cornering stiffness, understeer

gradient, yaw moment of inertia, and roll stiffness, can be estimated using the esti-

mated vehicle states.

Based on the estimated states and parameters, Chapter 6 presents a new method

for identifying road bank and suspension roll separately using a disturbance observer

and a vehicle dynamic model. A dynamic model, which includes suspension roll

as a state and road bank as a disturbance, is first developed, and a disturbance

observer is then implemented from the vehicle model. Experimental results show that

the suspension roll and road bank angles are estimated separately by the proposed

estimation scheme. Chapter 7 concludes the thesis by summarizing the main results

and suggesting possible directions for future work.



Chapter 2

Vehicle Dynamics

This chapter explains fundamental concepts of vehicle lateral dynamics by introduc-

ing linear tire and bicycle models, which have been commonly adopted for vehicle

dynamics control. The introduced models help to get a basic idea of what states and

parameters of a vehicle are important to implement vehicle dynamics control systems.

This chapter also explains how the understeer gradient of a vehicle is defined. The

understeer gradient is one of the most important vehicle properties which determine

the handling characteristic of a vehicle and proves useful in discussing parameter

estimation results.

2.1 Linear Tire Model

One of the most significant functions of a tire is to generate lateral forces to control

the vehicle’s direction. The tires of a vehicle produce lateral forces as they deform

with slip angles as shown in Fig. 2.1. The slip angle, α, represents the angle between

the tire’s direction of travel and its longitudinal axis.

As the tire rolls, the tire contact patch over the ground deforms according to the

direction of travel. This deformation and the elasticity of the tire produce the lateral

tire force. Figure 2.2 shows experimental measurements of the lateral force supplied

by a tire as a function of the slip angle [23]. In the linear region of the tire curve

14
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Figure 2.1: Rolling Tire Deformation and Lateral Force

(small slip angle), the lateral force of the tire can be modeled as:

Fy = −Cαα (2.1)

where cornering stiffness, Cα, represents the slope of initial portion of the tire curve.
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2.2 Planar Bicycle Model

The lateral dynamics of a vehicle in the horizontal plane are represented here by

the single track, or bicycle model with states of lateral velocity, uy, and yaw rate,

r. The bicycle model is a standard representation in the area of ground vehicle

dynamics and has been used extensively in previous work [7, 16, 38, 46, 48, 54].

While detailed derivation and explanation can be found in many textbooks [14, 35],

the underlying assumptions are that the slip angles on the inside and outside wheels

are approximately the same and the effect of the suspension roll is small. These

assumptions hold well for most typical driving situations and, in particular, for the

test maneuvers used for validation in this thesis.

δ

αf

r

αr

uy,CG

ux,CG

Fy,r

Fy,f

βCG

γ
CG

ψ

UCG

Figure 2.3: Bicycle Model

In Fig. 2.3, δ is the steering angle, ux and uy are the longitudinal and lateral

components of the vehicle velocity, Fy,f and Fy,r are the lateral tire forces, and αf

and αr are the tire slip angles. Derivation of the equations of motion for the bicycle

model then follows from the following force and moment balances:

may = Fy,f cos δ + Fy,r

Iz ṙ = aFy,f cos δ − bFy,r (2.2)
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where Iz is the moment of inertia of the vehicle about its yaw axis, m is the vehicle

mass, a and b are distance of the front and rear axles from the CG.

Using the linear tire model in Eq. (2.1), the front and rear tire forces, Fy,f and

Fy,r, become:

Fy,f = −Cαfαf , Fy,r = −Cαrαr (2.3)

where Cαf and Cαr are the total front and rear cornering stiffness. The assumption

that both the slip angle and the cornering stiffness are approximately the same for

the inner and outer tires on each axle is inherent in this equation.

Linearized with the small angles, the tire slip angles, αf and αr, can be written

in terms of ux,CG, uy,CG, r, and δ:

αf ≈ uy,CG + ar

ux,CG

− δ

αr ≈ uy,CG − br

ux,CG

(2.4)

The state equation for the bicycle model can be then written as:

[
u̇y,CG

ṙ

]
=

[ −Cαf−Cαr

mux,CG
−ux,CG +

Cαrb−Cαf a

mux,CG

Cαrb−Cαf a

Izux,CG

−Cαf a2−Cαrb2

Izux,CG

][
uy,CG

r

]
+

[
Cαf

m
Cαf a

Iz

]
δ (2.5)

Note that given the longitudinal and lateral velocities, ux and uy, at any point on

the vehicle body, the sideslip angle can be defined by:

β = tan−1

(
uy

ux

)
≈ uy

ux

(2.6)

The sideslip angle at the center of gravity (CG) is shown by βCG in Fig. 2.3. The

sideslip angle at any point on the body can also be defined as the difference between

the vehicle yaw angle (ψ) and the direction of the velocity (γ) at that point.

β = γ − ψ (2.7)
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Since a two-antenna GPS receiver provides both velocity and yaw angle measure-

ments, the vehicle yaw angle and direction of the velocity can be directly measured.

In the flat world of the bicycle model, therefore, the sideslip angle can be calculated

by simply using Eq. (2.7). The errors introduced by this simplification are discussed

in subsequent sections.

2.3 Understeer Gradient

The understeer gradient describes vehicle handling characteristics. Using the steady-

state bicycle model, the understeer gradient can be determined from the weight distri-

bution and the cornering stiffness. For a steady-state turning vehicle with a constant

speed of V , lateral acceleration of the vehicle, alat, and the vehicle speed, V , can be

written as:

alat =
V 2

R
, V = Rr (2.8)

where R is the radius of the turn. The steer angle, δ can be then derived from

Eqs. (2.4), (2.6), and (2.8):

βCG = tan−1

(
uy,CG

ux,CG

)
≈ uy,CG

ux,CG

≈ uy,CG

V

αf ≈ βCG +
ar

V
− δ = βCG +

a

R
− δ

αr ≈ βCG − br

V
= βCG − b

R

∴ δ ≈ a + b

R
− αf + αr =

L

R
− αf + αr (2.9)

where L is the wheelbase.

The steady-state force and moment balances are from Eq. (2.2) with small angles.

Fy,f + Fy,r = m
V 2

R
aFy,f = bFy,r (2.10)

The tire slip angles, αf and αr, can be calculated from the following equations using
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the linear tire model in Eq. (2.3).

Fy,f =
b

L

mV 2

R
=

Wr

g

V 2

R
= −Cαfαf

Fy,r =
a

L

mV 2

R
=

Wf

g

V 2

R
= −Cαrαr (2.11)

∵ Wf =
b

L
mg, Wr =

a

L
mg

where Wf and Wr are the vehicle loads on the front and rear axles respectively. Using

Eq. (2.9), the steer angle is therefore given by:

δ =
L

R
− αf + αr =

L

R
+

(
Wf

Cαf

− Wr

Cαr

)
V 2

Rg

=
L

R
+ KUS

alat

g
(2.12)

where

KUS =
Wf

Cαf

− Wr

Cαr

= understeering gradient in rad/g

Equation 2.12 is very important to determine the handling characteristic of a

vehicle. This equation determines how the steer angle should be changed according

to the radius of turn and the lateral acceleration of the vehicle. If KUS is zero, the

vehicle is called neutral steering and no change in steer angle on a constant radius

turn is necessary even as the speed of the vehicle varies. If KUS is greater than

zero, the vehicle is understeering and the steer angle should increase on a constant

radius turn as the speed of the vehicle increases. Similarly, if KUS is less than zero,

the vehicle is oversteering and the steer angle turn should decrease on a constant

radius as the speed of the vehicle increases. The understeer gradient also affects the

dynamic response of the vehicle. An understeering vehicle has system poles in the

left half plane regardless of the vehicle speed, but the poles move further from the

real axis and the response becomes oscillatory as the vehicle speed increases. On

the other hand, poles of an oversteering vehicle move to the right half plane as the
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speed increases. As a result, an understeering vehicle is always stable, but the vehicle

response becomes oscillatory at higher speed, while an oversteering vehicle becomes

unstable at higher speed.



Chapter 3

Vehicle State Estimation Using

GPS

3.1 Introduction

While new steering and braking actuator designs provide new opportunities to shape

vehicle dynamics through active control, the primary challenge in the development

of vehicle control systems remains the lack of necessary feedback. In particular, the

difficult problem of estimating the sideslip angle or lateral velocity of the vehicle

currently limits the algorithms that can be incorporated in production systems [49].

Although vehicle stability and steering control systems require sideslip angle for their

control purposes [17, 31, 38] and future steer-by-wire systems will require it for full-

state feedback [54], current vehicles are not equipped with an ability to measure the

sideslip angle directly. As a result, the sideslip angle must instead be estimated for

vehicle control applications. Two common techniques for estimating the sideslip angle

are integrating an automotive grade accelerometer and rate gyro directly and using a

physical vehicle model as an observer [16, 17, 27]. Some methods use a combination

or switch between these two methods appropriately based on vehicle states [17, 38].

While they have enabled vehicle dynamics control in series production, these solutions

nevertheless have fundamental problems. Direct integration methods can accumulate

error from sensor noise and unwanted measurements from road grade and bank angle

21
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(superelevation) while methods based on a physical vehicle model can be sensitive to

changes in the vehicle parameters and inaccurate on low friction surfaces [48]. The

vehicle control systems of the future, therefore, will only be enabled by improvements

in sensing.

This chapter presents a method of estimating sideslip angle and other vehicle

states using a two-antenna GPS receiver which avoids these estimation errors. Since

a two-antenna GPS receiver provides direct measurements of vehicle velocity and

attitude (yaw and roll) in addition to position information, key vehicle states including

sideslip angle can be estimated using GPS velocity and attitude measurements. The

GPS measurements are combined with automotive grade inertial sensors to get high

update rate estimates of the vehicle.

3.1.1 Chapter Outline

This chapter first starts with a brief description of general Kalman filter structure,

which is used to integrate inertial sensors with GPS for state estimation throughout

the whole chapter. This chapter then investigates a state estimation method using

a planar vehicle model, which does not consider road grade and vehicle roll. These

estimation results show that the effects of grade and roll create significant error in

sideslip angle estimation. To avoid estimation error caused by road grade and vehicle

roll, a roll center model of the vehicle with road grade is introduced. A road grade

estimate is derived from GPS velocity. The estimate combined with roll information

from the two-antenna system is used to improve the accuracy of the vehicle state

and sensor bias estimates. As a final refinement step, this chapter provides calibra-

tion procedures for the sensitivity and cross-coupling of inertial sensors to reduce

estimation error further.
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3.2 GPS/INS Integration Using Kalman Filters

3.2.1 General Kalman Filter Structure

Because the update rate of most GPS receivers is not high enough for control pur-

poses [7], INS sensors are commonly integrated with GPS measurements in a Kalman

filter structure to provide higher update rate estimates of the vehicle states. While

the filter could be based around the physical model in Eq. (2.5), there are some draw-

backs to such an approach. Since this model is valid only in the linear region and

the parameters involve significant uncertainty, particularly with respect to tire stiff-

nesses, a Kalman filter built on this model may possess significant estimation error.

With the two antenna GPS system, however, it is possible to use two kinematic mod-

els, independent of any physical parameter uncertainties and changes, in the state

estimator.

The traditional Kalman filter is comprised of a measurement update and a time

update [22, 45]. Because of the lower update rate of the GPS measurement, the

measurement update is performed only when GPS is available in order to estimate

the sensor bias and minimize the state estimation error. The measurement update is

generally described by:

xt(+) = xt(−) + Kt (yt − Cxt(−))

Kt = Pt(−)CT
(
CPt(−)CT + R

)
or Kt = Pt(+)CT R−1 (3.1)

Pt(+) = (I − KtC) Pt(−) or Pt(+)−1 = Pt(−)−1 + CT R−1C

where

xt(−) = prior estimate of system state at time t

xt(+) = updated estimate of system state at time t

Pt(−) = prior error covariance matrix at time t

Pt(+) = updated error covariance matrix at time t

Kt = Kalman Gain at time t
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yt = new measurement at time t

C = observation matrix

R = measurement noise covariance matrix

Here x and y represent vehicle states of interest and available measurements, respec-

tively, for a general filter. Simple integration of the inertial sensors is performed

during the time update because GPS measurements are not available. Using the

discrete model of a sampled-data system, the time update can be written as:

xt+1(−) = Adxt(+) + Bdut

Pt+1(−) = AdPt(+)AT
d + Q (3.2)

where

Ad = eA∆T =
∞∑

k=0

Ak∆T k

k!

Bd =

∫ ∆T

0

eAη dη B =
∞∑

k=0

Ak∆T k+1

(k + 1)!
B

ut = input to system at time t

Q = process noise covariance matrix

This Kalman filter structure is used for all of the individual filters throughout the

whole chapter.

3.2.2 State Estimation with Simple Planar Vehicle Model

In previous work with GPS for sideslip estimation [7], the vehicle yaw angle was es-

timated by integrating a yaw gyro. This is not an ideal approach, however, since the

estimate must be periodically reset while driving straight in order to prevent integra-

tion of gyro bias error from producing large, fictitious sideslip values. The addition

of a two-antenna GPS receiver solves this problem by providing an absolute attitude

reference and the opportunity to neatly decouple the estimation problem into two
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simple Kalman filters. One is used to estimate the vehicle yaw angle without errors

arising from gyro integration. The other is used to estimate absolute longitudinal

and lateral velocities of the vehicle without using wheel speed sensors, thus avoiding

error caused by wheelslip.

For the yaw Kalman filter, the kinematic relationship between the yaw rate mea-

surements and the yaw angle can be written as:

rm = ψ̇ + rbias + noise (3.3)

where

ψ = yaw angle of vehicle

rm, rbias = yaw rate gyro measurement and bias

The yaw angle can be measured using a two-antenna GPS receiver.

ψGPS
m = ψ + noise (3.4)

where

ψGPS
m = yaw angle measurement from GPS

A linear dynamic system can be constructed from Eqs. (3.3) and (3.4) using the

inertial sensor as the input and GPS as the measurement.

[
ψ̇

ṙbias

]
=

[
0 −1

0 0

][
ψ

rbias

]
+

[
1

0

]
rm + noise (3.5)

When GPS attitude measurements are available,

ψGPS
m =

[
1 0

][ ψ

rbias

]
+ noise (3.6)
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The Kalman filter in Eqs. (3.1) and (3.2) is then applied to the system to obtain

the vehicle yaw angle and the gyro bias. Using Eq. (3.2), a discrete representation of

sampled Eq. (3.5) can be written exactly as:

xt+1(−) = Adxt(+) + Bdut

Ad = eA∆T =
∞∑

k=0

Ak∆T k

k!
=

[
1 −∆T

0 1

]
(3.7)

Bd =

∫ ∆T

0

eAη dη B =
∞∑

k=0

Ak∆T k+1

(k + 1)!
B =

[
∆T

0

]

The state vector, x, in this Kalman filter is [ ψ rbias ]T , the input, u, is the measured

yaw rate rm from the yaw rate gyro. The measurement y in the Kalman filter is the

yaw angle from GPS, ψGPS
m , with observation matrix C, which is [ 1 0 ] only when

GPS measurements are available. The observation matrix, C, is [ 0 0 ] when GPS

measurements are not available since the system simply integrates the gyro in this

case.

For the velocity Kalman filter, the kinematic relationship between acceleration

measurements and velocity components at the point where the sensor is located can

be written as:

ax,m = u̇x,sensor − ψ̇uy,sensor + ax,bias + noise

ay,m = u̇y,sensor + ψ̇ux,sensor + ay,bias + noise (3.8)

where

ux,sensor = longitudinal velocity at sensor location

ax,m, ax,bias = longitudinal accelerometer measurement and bias

uy,sensor = lateral velocity at sensor location

ay,m, ay,bias = lateral accelerometer measurement and bias

The longitudinal and lateral velocity can be estimated using GPS velocity together
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with the yaw Kalman filter. First, the sideslip angle, βGPS, needs to be calculated

using the velocity vector, UGPS, from the GPS measurement and the vehicle yaw

angle, ψ, from the yaw Kalman filter by Eq. (2.7). Then, the longitudinal velocity

measurement, uGPS
x,m , and lateral velocity measurement, uGPS

y,m , are simply:

uGPS
x,m =

∥∥UGPS
∥∥ cos(βGPS)

uGPS
y,m =

∥∥UGPS
∥∥ sin(βGPS) (3.9)

Assuming that the primary GPS antenna giving velocity measurements is placed

directly above the INS sensor location, the measured velocity components from GPS

can be written as:

uGPS
x,m = ux,sensor + noise

uGPS
y,m = uy,sensor + noise (3.10)

where

uGPS
x,m = longitudinal velocity measurement from GPS

uGPS
y,m = lateral velocity measurement from GPS

Note that Eq. (3.10) holds only when the primary GPS antenna is located above the

sensor location. If it is not, an additional velocity term from the yaw rate must be

taken into account.

A Kalman filter is then applied to the following linear dynamic system from

Eqs. (3.8) and (3.10) to obtain the vehicle velocities and the sensor biases.




u̇x,sensor

ȧx,bias

u̇y,sensor

ȧy,bias


 =




0 −1 r 0

0 0 0 0

−r 0 0 −1

0 0 0 0







ux,sensor

ax,bias

uy,sensor

ay,bias


+




1 0

0 0

0 1

0 0



[

ax,m

ay,m

]
+noise (3.11)
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where

r = ψ̇ = rm − rbias = compensated yaw rate

When GPS velocity measurements are available,

[
uGPS

x,m

uGPS
y,m

]
=

[
1 0 0 0

0 0 1 0

]



ux,sensor

ax,bias

uy,sensor

ay,bias


 + noise (3.12)

The state vector, x, is [ ux,sensor ax,bias uy,sensor ay,bias ]T and the measurement, y,

is [ uGPS
x,m uGPS

y,m ]T in the Kalman filter of Eqs. (3.1) and (3.2). The discrete state

space form of Eq. (3.11) can be represented exactly as:

Ad = eA∆T =
∞∑

k=0

Ak∆T k

k!

=




cos(r∆T ) − sin(r∆T )
r

sin(r∆T ) cos(r∆T )−1
r

0 1 0 0

− sin(r∆T ) 1−cos(r∆T )
r

cos(r∆T ) sin(r∆T )
r

0 0 0 1


 (3.13)

Bd =

∫ ∆T

0

eAη dη B =
∞∑

k=0

Ak∆T k+1

(k + 1)!
B =




sin(r∆T )
r

1−cos(r∆T )
r

0 0
cos(r∆T )−1

r
sin(r∆T )

r

0 0




3.3 Experimental Result with Planar Model

While the estimator in the previous section is quite simple, it relies heavily on the

assumption that motion occurs only in the plane. To determine the validity of this as-

sumption, a series of experiments was performed on a Mercedes E-class wagon shown

in Fig. 3.1 The test vehicle is equipped with a 3-axis automotive-grade accelerome-
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Figure 3.1: Test Vehicle with Two-Antenna GPS Set-up

ter/rate gyro triad sampled at 100 Hz. Sensor noise levels (1σ) are 0.05 m/s2 for the

accelerometers and 0.2 deg/s for the rate gyros. The vehicle is also equipped with

Novatel GPS antenna/receiver pairs, providing 10 Hz velocity measurements and 5 Hz

attitude measurements with a noise level (1σ) of less than 3 cm/s and 0.25 deg re-

spectively. (Figure 3.1 shows three GPS antennas, but the third one is a redundant

one. The system can be implemented using only two antennas.)

Because the GPS receiver introduces a half sample period inherent latency and

a finite amount of time is needed for computation and data transfer, the time tags

in the GPS measurement messages and the synchronizing pulse from the receiver

are used to align the GPS information with the inertial sensor measurements. This

synchronizing process is very important when the inertial sensors are combined with

the GPS measurements, because any time offset between two measurements may

result in significant overall estimation errors [7].

Figure 3.2 shows yaw angle estimates compared to raw GPS measurements from
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the two-antenna GPS system. Experimental tests consisting of several laps around

an uneven parking lot are performed. Note that integration of inertial sensors fills in

the gaps between GPS measurements. Even though the update rate of the GPS mea-

surements is not high enough for vehicle control purposes, the combination of GPS

measurements with inertial measurements provides estimates with sufficient band-

width for vehicle control applications [7].
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Figure 3.2: Yaw Angle Estimates

Figure 3.3 compares yaw rate and sideslip angle estimates from the GPS/INS

integration with the simulation results from a carefully calibrated bicycle model.

Since the velocity Kalman filter provides the velocity at the sensor location, the

velocity estimates are translated to the center of gravity with the yaw rate in order to

compare sideslip angle with the bicycle model. The similarity between the estimated

and model yaw rates demonstrates that the bicycle model used in the comparison is

indeed calibrated for the vehicle. In contrast, there are differences between estimated

and modeled sideslip angles. Even though the estimated sideslip is still much better

than that obtained from simply integrating the accelerometer [7] – the slip angle

estimate is quite clean and does not drift – the accuracy is less than would be desired

for control purposes. Not surprisingly, these differences are consistent with the uneven
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Figure 3.3: Yaw Rate and Sideslip Angle Estimates

grade and bank angle of the test path – factors neglected in the assumption of planar

motion. The correlation between these differences and unevenness of the surface can

be seen easily by comparing the accelerometer biases with the surface grade and

suspension roll.

Although some caveats are noted later in the chapter, the surface grade can in

general be estimated by examining the ratio of the vertical velocity obtained from

GPS to the horizontal GPS velocity [3].

θr ≈ tan−1

(
UV

UH

)
(3.14)

where

θr = road grade estimate

UV , UH = vertical and horizontal velocity from GPS

Figure 3.4 shows the strong correlation between the longitudinal accelerometer bias

and the grade along the test path calculated according to the velocity ratio. As
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Figure 3.4: Longitudinal Accelerometer Bias and Grade Estimates

would be expected, the longitudinal accelerometer bias term reflects the component

of gravitational acceleration entering as a result of the grade.

Since the two antennas of the GPS receiver are placed laterally, the combination

of road bank angle (sometimes called side-slope or superelevation) and suspension roll

can be directly measured. As shown in Fig. 3.5, the lateral accelerometer bias and

the roll angle show the same correlation as the longitudinal values. The rationale is

exactly the same since roll causes a component of the gravitational acceleration to

enter the lateral acceleration measurement.

3.4 Improved Model: Roll Center Model with Road

Grade

For a more accurate estimation of the slip angle it is necessary to compensate for the

effects of vehicle pitch and roll. While this could be accomplished in a number of ways

– such as incorporating a 3 or 4 antenna GPS system for 3D attitude measurement –

basic estimates of roll and grade are available with the existing sensor suite. Assuming
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Figure 3.5: Lateral Accelerometer Bias Estimates and Roll Angle Measurements

that vehicle pitch is caused mostly by road grade, and that grade can be estimated

by examining the velocity ratio using Eq. (3.14), gravity components in acceleration

measurements due to pitch and roll can be compensated using only a two-antenna

GPS receiver. Thus the measurements used to demonstrate the correlation between

sensor biases and road geometry in the previous section can be harnessed to remove

these effects.

A roll center vehicle model with a road grade and a bank angle is shown in Fig. 3.6.

This model assumes that the vehicle body rotates about a fixed point (the roll center)

on a frame that remains in the plane of the road. The expected gravity component in

the acceleration measurement can be explicitly specified and compensated in Eq. (3.8)

because the grade of the surface can be estimated from the GPS velocity measurement

and the total roll angle (the sum of the suspension roll angle and the bank angle or

superelevation of the surface) can be measured utilizing the two-antenna GPS receiver.

The kinematic relationship between acceleration measurements and velocity com-

ponents at the sensor location for this model can be written as:

ax,m = u̇x,sensor − ψ̇uy,sensor + ax,bias + g sin θr + noise
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Figure 3.6: Roll Center Model with Grade and Bank Angle
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ay,m = u̇y,sensor + ψ̇ux,sensor + ay,bias + g sin φ + noise (3.15)

where

θr = road grade estimate

φ = φr + φk = sum of road bank and suspension roll

These additional terms can easily be included in the Kalman filter from Eqs. (3.11),

(3.12), and (3.14). Equation (3.11) is written assuming road grade and bank angle

changes are small and extra terms due to rotating frames such as the Coriolis forces

are negligible.

Another important advantage in using the roll center model is that the roll motion

of vehicle can be taken into account when determining vehicle velocity. Note that

Eq. (3.15) is written for the point at which the sensor is located and the two GPS

antennas are placed on the top of the vehicle roof. Therefore, there is an additional

velocity component due to vehicle yaw and roll in the GPS velocity measurement.

This can be included by translating the velocity at the antenna to the point at which

the sensor is located using Eq. (3.16) under the assumption of small road grades and

bank angles.

uGPS
x,m = ux,sensor + r(ha − hs) sin φk + noise

≈ ux,sensor + noise

uGPS
y,m = uy,sensor − p(ha − hs) cos φk + noise (3.16)

≈ uy,sensor − p(ha − hs) + noise

where

r = yaw rate

p = roll rate

ha = distance from roll center to GPS antenna

hs = distance from roll center to INS sensor
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Since the suspension roll angle is small, the additional velocity component is negli-

gible relative to the vehicle longitudinal velocity. However, the additional velocity

component due to the roll rate should be considered in the lateral direction since the

lateral velocity is comparably small. This roll rate compensation plays an important

role when the vehicle is experiencing a heavy roll motion. If the primary GPS antenna

is not placed directly above the inertial sensor, the yaw rate of the vehicle should also

be taken into account in the lateral velocity measurement.

In addition, the sum of the road bank angle and the suspension roll can be esti-

mated by constructing a roll Kalman filter in the same manner as in the yaw Kalman

filter. Since the GPS antennas and roll gyro are attached to the vehicle body, only the

sum of the road bank angle and the suspension roll angle can be measured without

additional modeling. For the roll Kalman filter, the kinematic relationship between

roll rate measurements and roll angle can be written as:

pm = φ̇ + pm,err + noise (3.17)

where

pm, pm,err = roll rate gyro measurement and error

Here, pm,err represents the roll rate measurement error from the gyro bias and extra

roll rate term from road and vehicle kinematics. This extra roll term is explained

and exactly defined in Eqs. (6.13) and (6.15). The roll angle can be measured using

a two-antenna GPS receiver:

φGPS
m = φ + noise (3.18)

where

φGPS
m = roll angle measurement from GPS

The roll Kalman filter is then implemented using Eqs. (3.17) and (3.18) in the

same manner as in the yaw Kalman filter. The state vector, x, is [ φ pbias ]T and

the measurement, y, is the roll angle from GPS, φGPS
m .
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3.5 Experimental Results with Roll Model
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Figure 3.7: Comparison of Sideslip Angle Estimates

Figure 3.7 shows the experimental results of sideslip angle estimation with and

without the compensation. Since the velocity Kalman filter provides the velocity at

the sensor location, whereas the bicycle model generates the sideslip angle at the

center of gravity, the velocity estimates from the filter are translated with yaw and

roll rates to the corresponding point on the vehicle frame for the comparison with

the bicycle model. Note that the discrepancies between the model and estimate are

significantly reduced after the compensation. The same improvement can be seen in

the case of longitudinal velocity estimation shown in Fig. 3.8. Differences between the

longitudinal velocity estimate and wheel speed after the compensation are, in fact,

due to longitudinal slip of the tire.

The combination of road bank angle and suspension roll angle is also estimated

using the roll Kalman filter. Figure 3.9 shows roll estimates together with raw GPS

roll measurements. Integration of INS sensors fills in the gaps between GPS measure-

ments giving a smooth roll signal.

With accurate measurements of roll angle and roll rate, it is possible to estimate
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Figure 3.8: Longitudinal Velocity Estimates
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Figure 3.9: Roll Angle Estimates
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parameters related to the roll dynamics such as roll stiffness and damping ratio [42].

A dynamic roll model can be used for a wide variety of applications including rollover

prevention [10] or active suspension control. In addition, a parameterized vehicle roll

dynamic model could conceivably be used to separate roll and bank angle.

3.6 Further Refinements

3.6.1 Gyro Sensitivity Effects and Estimation

After the compensation for grade and roll described in the previous sections, both

sideslip angle and yaw rate estimates match the model predicted values very well, sug-

gesting that the proposed scheme can correct for changes in grade and roll. However,

the estimated sensor biases show significant variations over a short period of time,

which is not consistent with the bias estimates representing true sensor biases. These

variations can be seen in the following typical experimental results. As Fig. 3.10 il-

lustrates, considerable low frequency variation exists in the estimated accelerometer

bias after compensating for road grade and roll.
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Figure 3.10: Estimated Accelerometer Biases
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Similar variations can be also seen in the estimated yaw gyro bias in Fig. 3.11.

While the bias variation is significant, it is interesting to note that the bias is strongly

0 50 100 150 200
0

0.5

1
Y

aw
 g

yr
o 

bi
as

 (
de

g/
se

c)

0 50 100 150 200
−60

−40

−20

0

20

40

60

Y
aw

 r
at

e 
(d

eg
/s

ec
)

Time (sec)

Figure 3.11: Estimated Yaw Gyro Bias and Yaw Rate

correlated with the yaw rate. In other words, the yaw gyro bias increases or decreases

depending on the sign of the yaw rate. The yaw gyro bias increases when the yaw

rate is negative and decreases when the yaw rate is positive. This can easily be seen

in Fig. 3.11 at around 100 and 200 seconds.

The dependency of the bias on the sign of the yaw rate implies that there is an

error in the sensitivity (scale factor) of the yaw rate gyro. In order to resolve this

problem, a new sensor kinematic relationship that includes both sensitivity and bias

is used:

rm = srψ̇ + rbias + wr,m (3.19)

where

sr = yaw rate gyro sensitivity

wr,m = yaw rate measurement (gyro) noise
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Taking Eq. (3.19) into account, the system model becomes:

d

dt




ψ

1/sr

rbias/sr


 =




0 rm −1

0 0 0

0 0 0






ψ

1/sr

rbias/sr


 +




wr,m

wsr

wr,bias


 (3.20)

where

sr = yaw rate gyro sensitivity

wsr, wr,bias = process noise

The yaw Kalman filter can then be constructed using Eq. (3.20) in place of

Eq. (3.5). With this structure, the sensitivity and bias of the yaw rate gyro are

estimated together; the results are shown in Fig. 3.12. The estimated bias with
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Figure 3.12: Estimated Yaw Gyro Sensitivity and Bias

the sensitivity estimation shows much less variation and appears to have acceptable

performance for use in chassis control systems. Although the sensitivity is only ob-

servable when the vehicle is maneuvering, its value changes very slowly in the sensors

used in this work. Thus some heuristics can be used to estimate the sensitivity on
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the first few turns a vehicle makes (and perhaps occasionally update this value over

the course of a trip) before returning to the original filter structure.

3.6.2 Removing Cross-Coupling in Accelerometers

Since the yaw angle and yaw rate are coupled with the longitudinal and lateral veloc-

ities, the accelerometer biases are altered when the filter calibrates the correct yaw

gyro sensitivity. The estimated longitudinal and lateral accelerometer biases with the

new yaw filter are shown in Fig. 3.13.
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Figure 3.13: Estimated Accelerometer Biases with New Yaw Angle Estimation

Comparing with the previous results in Fig. 3.10, little improvement can be seen

in these biases. In fact, the ay bias looks even worse. However, these bias variations

can also be explained by correlation with other signals. Figure 3.14 compares the

longitudinal biases with the measured lateral acceleration, showing the similarity

between the two signals. Since the longitudinal accelerometer is not exactly aligned

with the vehicle’s longitudinal axis, the longitudinal accelerometer picks up not only

longitudinal acceleration but also lateral acceleration. Therefore, a cross-coupled

lateral acceleration component shows up as in the longitudinal accelerometer bias.
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Figure 3.14: Longitudinal Accelerometer Bias and Lateral Acceleration

This component can be explicitly specified and compensated in the previous kinematic

relationship for the longitudinal accelerometer.

ax,m = u̇x,sensor − ψ̇uy,sensor + ax,bias + g sin θr + cx,yay,ef + wax,m (3.21)

where

cx,y = cross-coupling coefficient from ay to ax

ay,ef = u̇y,sensor + ψ̇ux,sensor + g sin φ

= effective acceleration along lateral axis

wax,m = ax measurement (accelerometer) noise

Figure 3.15 shows the comparison between lateral accelerometer bias and lateral

acceleration. As in the case of the gyro, the lateral accelerometer bias variation

has a dependency on the lateral acceleration, which implies there is an error in the

sensitivity of the lateral accelerometer. As with the gyro sensitivity estimation, a new
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Figure 3.15: Lateral Accelerometer Bias and Lateral Acceleration

sensor kinematic relationship that includes both sensitivity and bias can be defined:

ay,m = say

(
u̇y,sensor + ψ̇ux,sensor + g sin φ

)
+ ay,bias + way,m (3.22)

where

say = lateral accelerometer sensitivity

way,m = ay measurement (accelerometer) noise

In order to estimate the cross-coupling coefficient, cx,y, Eq. (3.21) can be integrated

and rearranged by defining a term, ∆ux(t).

∆ux(t) = ux,acc(t) − ux,sensor(t) +

∫ t

0

(
ψ̇uy,sensor − g sin θr

)
dt∗

= ax,biast + cx,y

∫ t

0

ay,ef dt∗ + ∆ux,0 + noise (3.23)



CHAPTER 3. VEHICLE STATE ESTIMATION USING GPS 45

where

ux,acc(t) =

∫ t

0

ax,m dt∗

= longitudinal velocity from integrating ax measurements

Evaluating Eq. (3.23) at every sample time and rewriting in a linear estimation format

gives: 


∆ux(t0)
...

∆ux(tf )


 =




t0
∫ t0

t0
ay,ef dt∗ 1

...
...

...

tf
∫ tf

t0
ay,ef dt∗ 1






ax,bias

cx,y

∆ux,0


 + noise (3.24)

which is equivalently,

zx = Hx̂x + noise (3.25)

where

zx =




∆ux(t0)
...

∆ux(tf )


 , H =




t0
∫ t0

t0
ay,ef dt∗ 1

...
...

...

tf
∫ tf

t0
ay,ef dt∗ 1


 , x̂x =




ax,bias

cx,y

∆ux,0




Assuming that noise is zero-mean and uncorrelated, a least squares estimator can

then be applied to estimate the ax bias, cross-coupling coefficient, and initial velocity.

x̂x =
(
HT H

)−1
HT zx (3.26)

In practice, these assumptions will not strictly hold. However, this simple approach

works very well in obtaining reasonable estimates. The estimation is presented as a

batch process here since the cross-coupling is essentially static and continuous updat-

ing is not required.

Similarly, Eq. (3.22) can be integrated and rearranged to estimate the lateral

accelerometer sensitivity, say by defining a term, ∆ux(t).

∆uy(t) = uy,acc(t)
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= ay,biast + say

(
uy,sensor(t) +

∫ t

0

(
ψ̇ux,sensor + g sin φ

)
dt∗

)
+∆uy,0 + noise

= ay,biast + say

∫ t

0

ay,ef dt∗ + ∆uy,0 + noise (3.27)

where

uy,acc(t) =

∫ t

0

ay,m dt∗

= lateral velocity from integrating ay measurements

Evaluating Eq. (3.27) at every sample time:




∆uy(t0)
...

∆uy(tf )


 =




t0
∫ t0

t0
ay,ef dt∗ 1

...
...

...

tf
∫ tf

t0
ay,ef dt∗ 1






ay,bias

say

∆uy,0


 + noise (3.28)

which is equivalently,

zy = Hx̂y + noise (3.29)

where

zy =




∆uy(t0)
...

∆uy(tf )


 , H =




t0
∫ t0

t0
ay,ef dt∗ 1

...
...

...

tf
∫ tf

t0
ay,ef dt∗ 1


 , x̂x =




ay,bias

say

∆uy,0




As before, a least square estimator is applied to estimate the ay bias, sensitivity,

and initial velocity:

x̂y =
(
HT H

)−1
HT zy (3.30)

While the sensitivity may change with time, this variation was not found to be par-

ticularly large so continuous updating is unnecessary. The estimated cross-coupling

coefficient, cx,y, and lateral accelerometer sensitivity, say, are shown in the Fig. 3.16.

Taking into account compensation for roll, grade, the cross-coupling coefficient,

cx,y, and lateral accelerometer sensitivity, say, the model for the velocity Kalman
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Figure 3.16: Estimated Cross-coupling Coefficient and Lateral Accelerometer Sensi-
tivity

filter in Eq. (3.11) is replaced by the following linear dynamic system constructed

from Eqs. (3.21) and (3.22):




u̇x,sensor

ȧx,bias

u̇y,sensor

ȧy,bias


 =




0 −1 r cx,y/say

0 0 0 0

−r 0 0 −1/say

0 0 0 0







ux,sensor

ax,bias

uy,sensor

ay,bias




+




1 cx,y/say g 0

0 0 0 0

0 1/say 0 g

0 0 0 0







ax,m

ay,m

sin θr

sin φ


 +




wax,m

wax,bias

way,m

way,bias


 (3.31)

where

wax,bias, way,bias = process noise
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Figure 3.17 shows the estimated accelerometer biases after the cross-coupling be-

tween the two accelerometers and lateral accelerometer sensitivity are taken into

account.
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Figure 3.17: Estimated Accelerometer Biases after the Compensation

Note that the variations are reduced after the compensation. Since the lateral ac-

celeration tends to dominate over longitudinal acceleration, only cross-coupling from

the lateral acceleration to the longitudinal accelerometer and the lateral accelerometer

sensitivity are considered. Estimation of other sensitivity or cross-coupling parame-

ters could be included in an analogous manner but, since the signals are somewhat

lower, more convergence time is necessary and the resulting improvement is less. Ob-

viously, there are some remaining bias variations, but the absolute level of variation

is quite small given the relatively simple vehicle model used for estimation purposes.

In fact, a large portion of the remaining bias in longitudinal acceleration can be

traced to a single modeling assumption. Rapid grade fluctuations at certain spatial

frequencies are not detectable through the velocity based grade estimate. As the

vehicle moves along the road, the rear wheels see almost the same input as the front

wheels, delayed in time by the interval equal to the wheelbase divided by speed. This

time delay acts to filter the bounce and pitch motion of the vehicle, and has been
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called wheelbase filtering [23]. The typical effects of wheelbase filtering are illustrated

in Fig. 3.18.

Bounce Only

Pitch Only

Figure 3.18: Wheelbase Filtering Mechanism

When the wavelength of the road is equal to the wheelbase of the vehicle, or integer

multiples equal to the wheelbase, the vehicle only bounces up and down without a

pitch change. Similarly, only pitch motion occurs when the wavelength is equal to

twice the wheelbase or odd integer multiples equal to twice the wheelbase length. In

either case, at these frequencies, the velocity based grade estimate does not reflect the

true grade seen by the vehicle. While this effect is small for most roads, the parking lot

structure used for testing has a pronounced periodic texture (comparable to the lower

half of Fig. 3.18) to provide for drainage. Thus the unmodeled dynamics reflected in

the bias variation in Fig. 3.17 have an easily understood physical interpretation in

light of the assumptions made in grade measurement. The fact that such seemingly

small effects appear provides some additional measure of confidence that the estimator

is correctly capturing the larger vehicle motion.



Chapter 4

State Estimation Performance and

Application

The previous chapter shows experimentally that the proposed estimation method

gives vehicle state estimates at a level previously unavailable. However, the estimation

process involves cascaded Kalman filters and overall convergence is not immediately

clear from a theoretical standpoint. This chapter proves that the proposed estimation

method is stable and gives accurate state estimates for vehicle control purposes. First,

the convergence of the cascade filter structure is proven, and the performance of the

estimation method is then verified by statistical analysis. Finally, the estimated

vehicle states are used to modify a vehicle’s handling characteristics through a full

state feedback controller. This application shows the applicability of the proposed

estimation scheme. This handling modification work is performed jointly with Yih

[54]

4.1 Stability of Cascade Estimators

As shown in Fig. 4.1, the vehicle state estimator presented in the previous chapter

forms a structure of cascade estimators. The velocity filter uses estimates from the roll

and yaw filters in a cascade manner to estimate longitudinal and lateral velocities.

However, the overall convergence of such cascade estimators is not shown in the

50
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previous chapter. The convergence of generalized cascade estimators is investigated

Longitudinal & Lateral
Accelerometers

GPS Velocity

Accelerometer
Biases

Longitudinal & Lateral
Velocities

Velocity Filter

GPS Heading

Yaw Gyro Bias

Vehicle Heading

Yaw Gyro
Yaw Filter

GPS Roll

Vehicle Roll

Roll Gyro Bias

Roll Gyro
Roll Filter

Figure 4.1: Cascade Estimators for Vehicle State Estimation

here in order to show that the proposed estimator structure is stable.

Figure 4.2 shows a generalized structure of the system structure to which the cas-

cade estimator approach can be applied. If two estimators are constructed as shown

System 1

Estimator

System 2

Estimator

u

v

y

z
H

^
C

x ^y

^w ^z

Figure 4.2: Generalized Cascade Estimators

in Fig. 4.2, estimates from the first estimator affect the system dynamics the second

estimator. When each estimator is designed according to conventional estimator de-

sign techniques, such as a Kalman filter or linear observer, the convergence of the

total system is studied here.
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The first estimator is designed to estimate states of system 1, which is described

by

ẋ = Ax + Bu (4.1)

y = Cx (4.2)

A linear estimator for system 1 is constructed as

˙̂x = Ax̂ + Bu + L (y − Cx̂) (4.3)

where x̂ is a estimate of x and L is the estimator gain. If the gain, L, is chosen

according to linear estimator design techniques, then the estimate error goes to zero:

ė1 = (A − LC) e1

e1 → 0 as t → ∞ (4.4)

where e1 = x − x̂.

The second estimator is constructed for system 2, which is described by

ẇ = Fw + Gv (4.5)

z = Hw (4.6)

where F = F (x). An estimator for system 2 can be designed according to the estima-

tor design theory similarly to the case of system 1. However, the F matrix estimate,

F̂ , is available only instead of the true F matrix when the F matrix is calculated

using estimates, x̂, from the estimator of system 1. As a result, the estimator for

system 2 is constructed using F̂ as

˙̂w = F̂ ŵ + Gv + K (z − Hŵ) (4.7)

where F̂ = F (x̂) and K is chosen using the estimator design theory, so that the
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following dynamics go to zero.

ė =
(
F̂ − KH

)
e

e → 0 as t → ∞ (4.8)

Two assumptions are made here, First, F̂ can be divided into the true value, F

and the error due to e1, ∆F , where ‖∆F‖ is known to converge to zero as e1 goes to

zero. Second, w is assumed to be bounded.

F̂ = F + ∆F (4.9)

‖∆F‖ → 0 as e1 → ∞ (4.10)

‖w‖ ≤ wmax (4.11)

Then, the estimate error of Eq. (4.7) can be calculated by subtracting Eq. (4.7) from

Eq. (4.5) and substituting Eq. (4.6).

ẇ − ˙̂w = Fw − F̂ ŵ − KH (w − ŵ)

=
(
F̂ − KH

)
(w − ŵ) − ∆Fw

ė2 =
(
F̂ − KH

)
e2 − ∆Fw (4.12)

where e2 = w − ŵ.

Using the triangle inequality and Eq. (4.11),

‖∆Fw‖ ≤ ‖∆F‖ ‖w‖ ≤ ‖∆F‖wmax (4.13)

Using Eqs. (4.10) and (4.13),

‖∆Fw‖ → 0 as e1 → ∞ (4.14)

Therefore,

∆Fw → 0 as e1 → ∞ (4.15)
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From Eqs. (4.4) and (4.15), Eq. (4.12) converges to the following equation as time

goes to infinity.

ė2 =
(
F̂ − KH

)
e2 (4.16)

Since K is chosen so that the above error dynamics are stable as shown in Eq. (4.8),

e2 → 0 as t → ∞ (4.17)

In the vehicle state estimation case, system 2 is equivalent to the velocity filter

and F is then from Eq. (3.11):

F =




0 −1 r 0

0 0 0 0

−r 0 0 −1

0 0 0 0


 (4.18)

F̂ is given from the yaw filter as

F̂ =




0 −1 rm − r̂bias 0

0 0 0 0

−rm + r̂bias 0 0 −1

0 0 0 0


 (4.19)

=




0 −1 r + er 0

0 0 0 0

−r − er 0 0 −1

0 0 0 0


 (4.20)

=




0 −1 r 0

0 0 0 0

−r 0 0 −1

0 0 0 0


 +




0 0 er 0

0 0 0 0

−er 0 0 0

0 0 0 0


 (4.21)

= F + ∆F (4.22)
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where er → 0 and ‖∆F‖ → 0 as t → ∞.

Therefore, Eqs. (4.9) and (4.10) hold and the estimate error goes to zero according

to Eq. (4.17) assuming the vehicle velocity is bounded.

4.2 Statistical Analysis of State Estimation

In the previous chapter, the vehicle state estimates are compared to predictions from

a calibrated model instead of actual truth values. This is a result of the difficulty

involved with obtaining truth measurements for speed over ground. Optical systems

do exist but are far more expensive than the even the research version of the system

presented here and suffer from some inaccuracies of their own. It is possible, however,

to offer additional support for the filter performance by comparing the innovation

statistics to the predictions obtained by propagating the sensor and process noise

covariances through the Kalman filters. As this section shows, simple prediction from

a linear Kalman filter analysis describes the experimental behavior quite accurately.

The unique structure of the Kalman filters used in this work makes it possible to

develop a statistical analysis easily given only the specifications of the INS sensors

and GPS receivers. This follows from the fact that all the system models for the

Kalman filters are purely based on the kinematic relationships between the INS sensor

measurements and the vehicle states as shown in Eqs. (3.20) and (3.31). This means

that the system model noise (process noise) is mainly from the INS sensor noise,

assuming that the biases and sensitivities of the INS sensors can be modeled as random

walks with relatively small variances. As a result, noise from the INS sensors, such

as accelerometers and rate gyros, act as the process noise in the Kalman filters and

the noise from the GPS system enters as traditional measurement noise in Eqs. (3.4)

and (3.16).

Table 4.1 shows the actual values for the process noise variances of the Kalman

filters used in this work. The noise variances of the accelerometers and the rate gyros

are taken from the sensor specification and are used as the process noise variances for

the corresponding vehicle states. The noise variances for the sensor sensitivities and

biases are chosen from the experimental tests to give reasonable convergence rates of
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the sensitivity and bias estimates. The numerical values for the measurement noise

variances of the Kalman filters are also shown in Table 4.1. The noise covariances

of the GPS angle and velocity measurements are taken from the GPS receiver spec-

ifications and are used as the measurement noise variances for each Kalman filter.

Process Noise
State 1 σ State 1 σ
wr,m 0.2 (deg/s) wax,m 0.05 (m/s2)
wsr 1.0e-3 way,m 0.05 (m/s2)

wr,bias 1.0e-2 (deg/s) wax,bias, way,bias 1.0e-3 (m/s2)

Measurement Noise
Measurement 1 σ

ψGPS
m 0.2 (deg)

uGPS
x,m 0.03 (m/s)

uGPS
y,m 0.03 (m/s)

Table 4.1: Measurement and Process Noise Covariances

With these noise variances, the estimate error covariances can be calculated from

the Kalman filters under the assumption that all calibration is correct and all com-

pensation is performed exactly. These covariances describe the differences between

the filter output and ground truth, however, and are not directly comparable to the

measurement residual (or innovation) obtained by comparing the filter output to the

measurement at each time step. For a proper comparison, the expected variances of

the measurement residuals may be calculated as the sum of the error covariances from

the Kalman filters and the variances of the measurement noise as shown in Eq. (4.23),

assuming that the process noise and measurement noise are uncorrelated.

S = CPCT + R (4.23)

where

S = measurement residual covariance

C = observation matrix
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P = error covariance matrix

R = measurement noise covariance matrix

Yaw Measurement Residuals Expected Variances
Filter Mean -4.1e-3 1 σ 0.2572 1 σ 0.2544

Velocity Measurement Residuals Expected Variances
Filter Mean -1.3e-4 1 σ 0.04037 1 σ 0.03852

Percentages within σ Bounds
Yaw Filter ≤ 1 σ 71.57% ≤ 2 σ 94.90% ≤ 3 σ 98.83%

Velocity Filter ≤ 1 σ 69.88% ≤ 2 σ 95.54% ≤ 3 σ 99.08%
Gaussian (Normal) ≤ 1 σ 68.27% ≤ 2 σ 95.45% ≤ 3 σ 99.73%

Table 4.2: Statistics of Measurement Residuals and Estimated Variances

The statistics of the actual measurement residuals from the experimental tests are

shown in Table 4.2 together with the expected variances of the measurement resid-

uals. It can be seen that the variances of measurement residuals are similar to the

Kalman filter predictions. This suggests that the calibration and compensation meth-

ods function as desired. In reality, the sensor performance is slightly better than that

guaranteed by the manufacturer but in these experiments this conservatism neatly

balances degradation due to unmodeled effects such as wheelbase filtering. Table 4.2

also demonstrates that the mean values of the measurement residuals are virtually

zero. This implies that the techniques for the sensor bias removal work and no serious

biases exist during the estimation processes. The distributions of the measurement

residuals are also compared with the Gaussian (normal) distribution in the last three

columns of Table 4.2. The comparison shows that the measurement residuals follow

the normal distribution roughly. This indicates that the basic assumption of this

analysis (zero-mean Gaussian noise) is reasonable and that the Kalman filter error

prediction is in fact meaningful.

Figure 4.3 shows the plot of measurement residuals for each Kalman filter and the

bounding 3σ regions of confidence derived from the filter. Note that measurement

residuals are centered at zero and most of them are within the bounding 3σ regions.

The outliers, in fact, correspond to points where new GPS data was not available
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Figure 4.3: Measurement Residual vs. Estimated 3 σ Bounds

for a given time step, an effect that could be explicitly included in calculating the

expected variances but was not considered here.

4.3 Handling Modification

4.3.1 Introduction

As a step toward fully integrated vehicle dynamic control systems, active steering

capability is available on select production vehicles and will be popular in the near

future [8, 54]. One of the potential benefits of active steering capability is to improve

handling behavior by active steering control [2, 29]. Although feedback of sideslip

angle for active steering control has been proposed theoretically [37], the difficulty

in estimating vehicle sideslip presents an obstacle to accomplishing this in practice.

However, estimated sideslip from the proposed method may be used for active steer-

ing control since the proposed state estimation method provides accurate estimates

of vehicle sideslip. This section demonstrates that the estimates from the proposed

method are accurate and clean enough to be used by a real-world vehicle controller.
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A test vehicle converted to steer-by-wire is used to show that a vehicle’s handling

characteristics can be modified using a full state feed back controller with state es-

timates from the proposed GPS/INS method. This handling modification is really

beneficial to the drivers since it can take care of driver preferences, changes in weight

distribution, and tire wear.

4.3.2 Full State Feedback Controller

A full state feedback control law for an active steering vehicle is given by:

δ = Krr + Kββ + Kdδd (4.24)

where δd is the driver commanded steer angle and δ is the augmented angle (the total

steer angle at the road wheels). In order to modify a vehicle’s handling characteristics,

a target front cornering stiffness is first defined as:

Ĉαf = Cαf (1 + η) (4.25)

where η is the desired fractional change in the original front cornering stiffness Cf .

Then, the state feedback gains are set in terms of η as follows:

Kβ = −η, Kr = − a

V
η, Kd = −(1 + η)η (4.26)

Using the feedback law by Eq. (4.24) with Eq. (2.5), a new state space equation with

the new cornering stiffness Ĉαf is given in the same form as Eq. (2.5):

[
u̇y,CG

ṙ

]
=


 −Ĉαf−Cαr

mux,CG
−ux,CG +

Cαrb−Ĉαf a

mux,CG

Cαrb−Ĉαf a

Izux,CG

−Ĉαf a2−Cαrb2

Izux,CG



[

uy,CG

r

]
+

[
Ĉαf

m
Ĉαf a

Iz

]
δ (4.27)

Since tire cornering stiffness affects a vehicle’s handling characteristics directly, the

effect of changing front tire cornering stiffness is to make the vehicle either more

oversteering or understeering depending on the sign of η. There are obviously many

other ways to apply full state feedback control, but the physical motivation behind
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cornering stiffness adjustment makes clear through the bicycle model exactly how the

handling characteristics have been modified. Note that in this formulation, it is not

necessary to know the real cornering stiffness of the front tire – only vehicle speed and

weight distribution, which are relatively easy to measure, are necessary – to achieve

the desired handling modification.

4.3.3 Experimental Results

A production model 1997 Chevrolet Corvette is modified for full steer-by-wire capa-

bility by replacing the steering shaft with a brushless DC servomotor actuator [54].

The steer-by-wire test vehicle is also equipped with a two-antenna GPS receiver and

INS sensors configured to estimate its states as shown in Fig. 4.4. The experimental

setup for vehicle state estimation is the same as described in the previous chapter

and the same estimation method is used.

Figure 4.4: Experimental Steer-by-wire Vehicle

Experimental tests of the handling modification are performed at Moffett airfield,
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California. First, the test vehicle is driven without handling modification. Figure 4.5

shows that the measured yaw rate from a sinusoidal steering input while driving at

13.4 m/s (30 mile/hr) compares well to simulation results from the bicycle model.

After that, handling modification is implemented on the test vehicle. Changes in
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Figure 4.5: Comparison between Bicycle Model and Experiment with Normal Cor-
nering Stiffness

handling characteristics with the proposed full state feedback control scheme are

evaluated by comparing measured vehicle response to the nominal case shown in

Fig. 4.5.

In Fig. 4.6, the effective front tire cornering stiffness is reduced 50% by setting

η to -0.5. The experimental results exhibit lower peak yaw rate and sideslip val-

ues than the nominal case. This behavior is expected since reducing the front tire

cornering stiffness makes the vehicle tend toward understeer. Figure 4.7 confirms

that the experimental results for the reduced case match bicycle model simulation.

Experimental results show a corresponding but opposite change in handling behavior

when the effective front tire cornering stiffness is increased such that the vehicle tends

toward oversteer.

For the final series of tests, 182 kg (400 lbs) of weight are added to the rear of
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Figure 4.6: Comparison between Normal and Effectively Reduced Front Cornering
Stiffness
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Figure 4.7: Comparison between Bicycle Model and Experiment with Reduced Cor-
nering Stiffness
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the vehicle so that 43% of the total vehicle weight lies over the front axle with 57%

over the rear axle. The unloaded vehicle originally has a weight distribution balanced

equally front to rear. The loaded vehicle exhibits slightly more oversteering behavior

than the unloaded vehicle as seen in Fig. 4.8. However, a 20% reduction in front tire

cornering stiffness with active handling modification returns the controlled vehicle

to the near neutral handling behavior of the unloaded vehicle as shown in Fig. 4.9.

While the difference in handling behavior may seem small when viewed on a graph,

the improvement with handling modification is readily apparent to both driver and

passenger.
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Figure 4.8: Comparison between Unloaded and Loaded Vehicle

This work represents one of the first applications of GPS-based state estimation to

dynamic control of a vehicle with active steering. Experimental results demonstrate

that the estimated vehicle states can be used to alter a vehicle’s handling character-

istics with a full state feedback controller.
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Figure 4.9: Comparison between Unloaded Vehicle and Loaded Vehicle with Handling
Modification



Chapter 5

Vehicle Parameter Estimation

5.1 Introduction

The design of vehicle control systems requires sufficiently accurate system models in

order to achieve a desired level of closed-loop performance. Parameters of the models

are one of the important factors that determine the accuracy of system modeling

and eventually overall performance of closed-loop system. Using accurate estimates

of vehicle states at a level previously unavailable, key vehicle parameters – such as

tire cornering stiffness, understeer gradient, yaw moment of inertia, roll stiffness, and

roll damping coefficient – can be estimated easily. This chapter investigates various

vehicle parameter estimation schemes and demonstrates experimental results of the

estimation schemes. First, parameters of the bicycle model – such as tire cornering

stiffness, weight distribution, and yaw moment of inertia – are estimated using the

least squares method and total least squares method. Then, vehicle roll parameters

– such as roll stiffness and roll damping ratio – are estimated using the least squares

method. Once vehicle parameters are precisely estimated, then parameterized vehicle

dynamics models with properly estimated parameters can be used for a wide variety

of applications including highway automation, vehicle stability control, and rollover

prevention systems [10, 17, 38, 47, 53].

65



CHAPTER 5. VEHICLE PARAMETER ESTIMATION 66

5.2 Bicycle Model Parameter Estimation

5.2.1 Introduction

The lateral dynamics of a vehicle can be modeled using the bicycle model with several

parameters of the vehicle as shown in Fig. 2.3 and Eq. (2.5). The bicycle model is

written as:

[
u̇y,CG

ṙ

]
=

[ −Cαf−Cαr

mux,CG
−ux,CG +

Cαrb−Cαf a

mux,CG

Cαrb−Cαf a

Izux,CG

−Cαf a2−Cαrb2

Izux,CG

][
uy,CG

r

]
+

[
Cαf

m
Cαf a

Iz

]
δ (5.1)

The bicycle model includes mass, moment of inertia, cornering stiffness of tires, and

weight distribution of the vehicle to explain lateral dynamics of the vehicle. While

the mass of a vehicle can be estimated well as shown in previous work [3], identifying

cornering stiffness, yaw moment of inertia, and weight distribution of a vehicle still

remains a hard problem. In this section, the estimated vehicle states from a kinematic

Kalman filter are used to identify the front and rear cornering stiffness of the tires

and yaw moment of inertia and weight distribution of the vehicle. Because the vehicle

parameters are not used in the estimation of the vehicle states, a separate algorithm

can be used to identify the parameters of the vehicle.

5.2.2 Nonlinearity in Steering System

Since a steering wheel is connected to its road wheel through steering linkages, the

angle measured at the steering wheel does not always represent the road wheel angle

in a linear relationship when the steering system has nonlinearity. The nonlinearity

in the steering system should be taken into account in order to accurately estimate

cornering stiffness of tires because a small error in slip angle can result in a huge error

in estimating cornering stiffness of the tire.

Figure 5.1 shows the nonlinearity in the steering system of the test vehicle. The

dotted line represents road wheel angle calculated using a constant steering ratio,

and the solid line is the best third-order polynomial fit through measured values of

actual road angle. Note that measured actual road wheel angle does not have a linear
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relationship with steering wheel angle.
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Figure 5.1: Nonlinearity in Steering System

5.2.3 Estimation of Cornering Stiffness Using Least Squares

The front and rear cornering stiffness of the tires, Cαf and Cαr, are estimated first

assuming the mass, moment of inertia, and weight distribution are known or esti-

mated. The cornering stiffness can be estimated using the bicycle model and state

estimates from the kinematic Kalman filters because the filters do not rely on the

physical parameters. In order to estimate the front and rear cornering stiffness of the

tires, Cαf and Cαr, the bicycle model, Eq. (5.1), is rewritten in terms of those values

as in the following equation.

[
u̇y,CG

ṙ

]
=

[ −Cαf−Cαr

mux,CG
uy,CG − ux,CGr +

Cαrb−Cαf a

mux,CG
r +

Cαf

m
δ

Cαrb−Cαf a

Izux,CG
uy,CG +

−Cαf a2−Cαrb2

Izux,CG
r +

Cαf a

Iz
δ

]

=

[
f (Cαf , Cαr)

g (Cαf , Cαr)

]
(5.2)
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Equation (5.2) can then be expressed in a discrete form using the Euler method as

follows: [
uy,CG(k + 1)

r(k + 1)

]
=

[
uy,CG(k) + f (Cαf , Cαr) ∆T

r(k) + g (Cαf , Cαr) ∆T

]
(5.3)

where ∆T represents the sampling time.

Since the states, uy,CG and r, are available from the kinematic Kalman filters, the

least square method can be applied to estimate the cornering stiffness, Cαf and Cαr.

To apply the least square method, Eq. (5.3) can be rewritten as:

y = h(θ) (5.4)

where

y = [ uy,CG(k + 1) r(k + 1) ]T

θ = [ Cαf Cαr ]T

Because y is measured, there exists measurement error, ∆y, and the estimation prob-

lem can then be reformulated as follows:

min
θ

∥∥∥ ∆y
∥∥∥

Subject to: ŷ = h(θ) + ∆y (5.5)

where

ŷ = y + ∆y

∆y = measurement error

This minimization problem can be then solved by the conventional least squares

method since it forms a linear structure in terms of Cαf and Cαr as shown in Eq. (5.4).
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5.2.4 Estimation Results by Least Squares Method

Table 5.1 shows results of cornering stiffness estimation from experimental tests with

normal maneuvering. A typical test run is shown in Fig. 5.2. The reference values of
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Figure 5.2: Sideslip Angle and Yaw Rate of Experimental Test

the cornering stiffness, which are used for the bicycle model, are 100,000 N/rad for

the front tire and 160,000 N/rad for the rear tire.

Cαf (N/rad) Cαr (N/rad) Cαf (N/rad) Cαr (N/rad)
115,014 165,240 111,673 164,780

Experimental 130,078 191,390 100,198 192,090
Results 104,282 168,170 131,885 183,420

111,414 160,800 103,587 189,190
102,151 185,900 101,963 193,160

Cαf (N/rad) Cαr (N/rad)
Mean of Experimental Results 111,225 179,414
1 σ of Experimental Results 11,514 13,058

Reference Value 100,000 160,000

Table 5.1: Estimation results of Cornering Stiffness

Even though the simple linear least squares method is used, the cornering stiffness



CHAPTER 5. VEHICLE PARAMETER ESTIMATION 70

estimation yields a reasonable value for the bicycle model. In addition, the estimation

process can be easily applied to a real-time system in a recursive way since the

linear least squares method can be converted to a recursive method. The recursive

method takes care of only new data at every time step, not all of the past data.

This saves a lot of computational power and makes real-time implementation of the

method relatively easy. However, the estimation results shows some errors compared

to the reference value, and the variance is not insignificant. In order to resolve these

problems and make the estimator more robust and consistent, the structure of the

estimation problem should be examined more carefully.

5.2.5 Estimation Using Total Least Squares

When the least squares method is applied to Eq. (5.4), a basic assumption is that

measurement errors exist only with y as shown in Eq. (5.5). However, measurement

errors exist in both sides of the equation since the right side of the equation is also a

function of measurements, uy,CG and r. This is similar to orthogonal regression and

errors in the variables (EIV) problems, and the total least squares method can be

used to get more robust and consistent estimates [28].

In order to apply the total least squares for cornering stiffness estimation, the bicy-

cle model, Eq. (5.1), is rewritten in terms of measurements and unknown parameters

as in the following equation.

[
u̇y,CG

ṙ

]
=

[ −Cαf−Cαr

mux,CG
uy,CG − ux,CGr +

Cαrb−Cαf a

mux,CG
r +

Cαf

m
δ

Cαrb−Cαf a

Izux,CG
uy,CG +

−Cαf a2−Cαrb2

Izux,CG
r +

Cαf a

Iz
δ

]

=

[
f (uy,CG, r, Cαf , Cαr)

g (uy,CG, r, Cαf , Cαr)

]
(5.6)

Similarly to Eq. (5.3), Eq. (5.6) can be expressed in a discrete form using the Euler

method as follows:[
uy,CG(k + 1)

r(k + 1)

]
=

[
uy,CG(k) + f (uy,CG(k), r(k), Cαf , Cαr) ∆T

r(k) + g (uy,CG(k), r(k), Cαf , Cαr) ∆T

]
(5.7)
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where ∆T represents the sampling time.

To apply the total least squares method, Eq. (5.7) can be rewritten as:

y = h(x, θ) (5.8)

where

y = [ uy,CG(k + 1) r(k + 1) ]T

x = [ uy,CG(k) r(k) ]T

θ = [ Cαf Cαr ]T

Since x and y are measured, there exist measurement errors, ∆x and ∆y. The

estimation problem can then be reformulated as follows:

min
x,θ

∥∥∥∥∥ ∆x

∆y

∥∥∥∥∥
Subject to: ŷ − ∆y = h(x̂ − ∆x, θ) (5.9)

where

x̂ = x + ∆x

ŷ = y + ∆y

∆x, ∆y = measurement errors

This minimization problem can be then solved by iteration. The details of the total

least squares method are explained in Appendix A and other references [10].

5.2.6 Estimation Results by Total Least Squares Method

Figure 5.3 shows results of cornering stiffness estimation from an experimental test

by the total least squares method. The estimates converge to the given values in less

than ten iterations. Table 5.2 also shows results of cornering stiffness estimation by
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Figure 5.3: Estimation of Front and Rear Tire Cornering Stiffness

the total least squares method from the same experimental tests as used by the least

squares method in Table 5.1

Cαf (N/rad) Cαr (N/rad) Cαf (N/rad) Cαr (N/rad)
99,577 152,528 97,716 165,396

Experimental 85,071 138,612 100,500 159,384
Results 89,550 147,120 101,388 163,612

96,097 154,764 87,335 148,436
89,153 158,256 98,990 152,810

Cαf (N/rad) Cαr (N/rad)
Mean of Experimental Results 94,538 154,092
1 σ of Experimental Results 6,106 8,087

Reference Value 100,000 160,000

Table 5.2: Estimation results of Cornering Stiffness

As shown in Table 5.2, the estimates by the total least squares show less error

than the estimates from the least squares and also have less variance. Since the noise

structure of the estimation problem is taken care of more carefully with the total least

squares method, it yields more robust and consistent estimates than the least squares

method does as shown in Table 5.1.
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5.2.7 Estimation of Cornering Stiffness and Weight Distri-

bution

In the previous section, it is shown that the cornering stiffness can be estimated. A

natural question is whether the weight distribution can be simultaneously estimated

as well. In this section, the front and rear cornering stiffness of the tires, Cαf and Cαr,

and distances from front and rear axles to CG (weight distribution of the vehicle), a

and b, are estimated simultaneously using the nonlinear total least squares method.

Similarly to Eq. (5.6), the bicycle model is rewritten in terms of measurements and

unknown parameters as in the following equation.

[
u̇y,CG

ṙ

]
=

[ −Cαf−Cαr

mux,CG
uy,CG − ux,CGr +

Cαrb−Cαf a

mux,CG
r +

Cαf

m
δ

Cαrb−Cαf a

Izux,CG
uy,CG +

−Cαf a2−Cαrb2

Izux,CG
r +

Cαf a

Iz
δ

]

=

[
f (uy,CG, r, Cαf , Cαr, a)

g (uy,CG, r, Cαf , Cαr, a)

]
(5.10)

where b can be replaced by L − a assuming the wheelbase length, L, is known.

Equation (5.10) can then be expressed in a discrete form using the Euler method as

follows:[
uy,CG(k + 1)

r(k + 1)

]
=

[
uy,CG(k) + f (uy,CG(k), r(k), Cαf , Cαr, a) ∆T

r(k) + g (uy,CG(k), r(k), Cαf , Cαr, a) ∆T

]
(5.11)

where ∆T represents the sampling time.

Based on Eq. (5.11), the nonlinear total least squares method can be applied to

estimate cornering stiffness, Cαf and Cαr, and distance from front axle to CG, a,

in a manner similar to Eq. (5.9). Figure 5.4 shows results of cornering stiffness and

distance from front axle to CG estimation from an experimental test with normal ma-

neuvering. The test driving data is shown in Fig. 5.5. Interesting results are obtained

when cornering stiffness and weight distribution are estimated simultaneously from

tests with typical driving situations. Even though the estimation results converge in
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Figure 5.4: Estimation of Tire Cornering Stiffness and Weight Distribution
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less than ten iterations, estimates do not converge to the correct values. The esti-

mates should converge to 100,000 N/rad for front cornering stiffness, 160,000 N/rad

for rear cornering stiffness, and 1.313 for the distance from front axle to CG, but

apparently it is not the case in Fig. 5.4.

In fact, it turns out that the estimation of cornering stiffness and weight distribu-

tion is not always possible even when the vehicle is turning. This can be shown by

simulations as well as experimental tests. A series of simulations using the bicycle

model is performed with various inputs, and the cornering stiffness and weight dis-

tribution are estimated from the simulations. The simulation is performed with the

measurement and process noise. Variance of the measurement noise is measured from

the experimental tests, and variance of the process noise is guessed reasonably. The

estimation results are listed in Table 5.3.

Simulation Cαf Cαr a Understeer Gradient
Input (N/rad) (N/rad) (m) (deg/g)

0.1 Hz Sinusoid 88,092 66,840 0.9586 2.5463
0.4 Hz Sinusoid 96,200 126,180 1.2352 2.5032
2 Hz Sinusoid 98,800 152,400 1.3110 2.4965

Sinusoidal Sweep 0.1-0.5 Hz 94,930 112,660 1.1887 2.4847
Sinusoidal Sweep 0.1-1 Hz 97,510 135,560 1.2605 2.5063
Sinusoidal Sweep 0.1-2 Hz 98,130 149,290 1.3014 2.5293

Experiment 66,691 28,450 0.7301 2.3750

Reference Value 100,000 160,000 1.3130 2.5670

Table 5.3: Estimation results of Cornering Stiffness and Weight Distribution

As clearly seen in Table 5.3, the cornering stiffness and weight distribution can-

not be simultaneously estimated without sufficient excitation, especially without high

frequency input components. In other words, the estimated cornering stiffness and

weight distribution is not correct when the maneuvering does not excite vehicle lat-

eral dynamics enough. However, it is interesting that the understeer gradient result-

ing from the estimated cornering stiffness and weight distribution is always correct

whether there exists sufficient excitation or not.

This phenomenon can be analytically proven by analysis of the bicycle model.

Suppose there is not sufficient excitation or high frequency input components, the
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vehicle is then quasi-steady-state, which means resulting u̇y,CG and ṙ are small and

close to zero. As a result, the following equations are approximately satisfied from

the bicycle model, Eq. (5.1).

[ −Cαf−Cαr

mV
−V +

Cαrb−Cαf a

mV
Cαrb−Cαf a

IzV

−Cαf a2−Cαrb2

IzV

][
uy,CG

r

]
+

[
Cαf

m
Cαf a

Iz

]
δ ≈ 0 (5.12)

where

u̇y,CG ≈ 0, and ṙ ≈ 0

Then, rewriting Eq. (5.12) gives:

(−Cαf − Cαr

mV

)
uy,CG +

(
−V +

Cαrb − Cαfa

mV

)
r +

(
Cαf

m

)
δ ≈ 0 (5.13)(

Cαrb − Cαfa

IzV

)
uy,CG +

(−Cαfa
2 − Cαrb

2

IzV

)
r +

(
Cαfa

Iz

)
δ ≈ 0 (5.14)

In order to estimate three unknowns, Cαf , Cαr, and a, with the above two equa-

tions, multiple linearly independent data points are necessary because the number

of equations should be equal to or greater than the number of unknowns. However,

uy,CG, r, and δ are not linearly independent when the vehicle is quasi-steady-state.

This is because the steady-state uy,CG and r are linearly related to the steering angle,

δ as shown in Eq. (5.15).

uy,CG,ss =
Cαf (bLCαr − amV 2)V

L2CαfCαr − (Cαf + CαrmV 2)
δ

rss =
V

L + KUSV 2
δ (5.15)

Because of the relationships in Eq. (5.15), the data points from Eqs. (5.13) and (5.14)

are not linearly independent without sufficient excitation. In this case, Eqs. (5.13)

and (5.14) become under-determined and therefore have multiple solutions. While all

these solutions are mathematically valid, only one corresponds to the true physical

values. In such a case, Eq.(5.9) gives the least norm estimates of cornering stiffness
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and weight distribution, which are not necessarily the true values.

Linear dependency of uy,CG, r, and δ due to lack of excitation in the experimental

data can be graphically shown. Figure 5.6 shows plots of uy,CG vs. δ and r vs. δ from

the experimental test. It is clearly seen that there exist strong linear relationships.
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Figure 5.6: uy,CG vs. δ and r vs. δ from experimental test

Even though cornering stiffness and weight distribution can not be always es-

timated correctly, especially without sufficient excitation, the understeer gradient

can be correctly identified. Suppose the vehicle lateral dynamics are not excited

enough and the estimated cornering stiffness and weight distribution are not correct,

Eqs. (5.13) and (5.13) still hold even in this case. The following equation is then

derived Eq. (5.13):

uy,CG ≈ −aCαfr + bCαrr − mrV 2 + CαfV δ

Cαf + Cαr

(5.16)

Substituting Eq. (5.16) in Eq. (5.14) gives:

δ ≈ (a + b)r

V
− (aCαf − bCαr)mrV

(a + b)CαfCαr
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=
Lr

V
+

m

L
(

b

Cαf

− a

Cαr

)rV (5.17)

=
Lr

V
+ KUS

rV

g

Because Eq. (5.17) is from Eqs. (5.13) and (5.14), any combination of Cαf , Cαr, and

a, which satisfies Eqs. (5.13) and (5.14) satisfies Eq. (5.17). It is then obvious that

the understeer gradient, KUS, from the estimated Cαf , Cαr, and a using Eqs. (5.13)

and (5.14), satisfies Eq. (5.17) and as a result, the estimated understeer gradient is

correct even when the estimated Cαf , Cαr, and a are not correct individually.

While cornering stiffness and weight distribution cannot be estimated simulta-

neously without sufficient excitation, the cornering stiffness alone can be estimated

correctly assuming the weight distribution is known. Table 5.4 shows estimated front

and rear cornering stiffness from the same experimental and simulation data sets.

Simulation Cαf Cαr

Input (N/rad) (N/rad)
0.1 Hz Sinusoid 98,770 152,840
0.4 Hz Sinusoid 98,470 154,740
2 Hz Sinusoid 98,840 153,060

Sinusoidal Sweep 0.1-0.5 Hz 98,260 154,310
Sinusoidal Sweep 0.1-1 Hz 98,790 155,860
Sinusoidal Sweep 0.1-2 Hz 98,840 152,980

Experiment 98,990 152,810

Reference Value 100,000 160,000

Table 5.4: Estimation Results of Front and Rear Cornering Stiffness

5.2.8 Estimation of Yaw Moment of Inertia with Cornering

Stiffness

The previous section shows that cornering stiffness of a vehicle can be easily estimated

using the proposed method. In addition, it shows that weight distribution of the vehi-

cle can be estimated simultaneously when sufficient excitation exists. The remaining

problem is to estimate yaw moment of inertia of the vehicle. In some cases, especially
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for vehicle testing purposes, the mass and weight distribution of the vehicle can be

measured using a scale, but the yaw moment of inertia is not easy to measure. Even

though there exists a rule to approximate yaw moment of inertia of a vehicle [18], that

is still just an approximation not an actual value, and the approximated value may

not be accurate enough to analyze vehicle test results and control the vehicle. This

section shows that yaw moment of inertia can be estimated together with cornering

stiffness.

Similarly to Eq. (5.6), the bicycle model can be rewritten in terms of cornering

stiffness, Cαf and Cαr, and yaw moment of inertia, Iz, with known vehicle states as

in the following equation.

[
u̇y,CG

ṙ

]
=

[
f (uy,CG, r, Cαf , Cαr, Iz)

g (uy,CG, r, Cαf , Cαr, Iz)

]
(5.18)

Then, the above equation can be expressed in a discrete form using the Euler method

as follows:[
uy,CG(k + 1)

r(k + 1)

]
=

[
uy,CG(k) + f (uy,CG(k), r(k), Cαf , Cαr, Iz) ∆T

r(k) + g (uy,CG(k), r(k), Cαf , Cαr, Iz) ∆T

]
(5.19)

where ∆T represents the sampling time.

Based on Eq. (5.19), the nonlinear total least squares method, similarly to Eq. (5.9),

can be applied to estimate cornering stiffness, Cαf and Cαr, and yaw moment of in-

ertia, Iz. Figure 5.7 shows the estimation results from a experimental test. The

estimates converge to the correct values in less than ten iterations.

In fact, it turns out that the estimation of yaw moment of inertia fails when there

is not sufficient excitation similarly to the estimation of weight distribution. Unlike

the case of simultaneous estimation of cornering stiffness and weight distribution, the

estimation of yaw moment of inertia often diverges when the estimation fails. This

is because the yaw moment of inertia, Iz, exists only in denominators of the bicycle

model and drops out when there is not sufficient excitation as shown in Eq. (5.14).
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Figure 5.7: Estimation of Front and Rear Tire Cornering Stiffness and Yaw Moment
Inertia

5.2.9 Discussion of Bicycle Model Parameter Estimation

The previous sections show that cornering stiffness, weight distribution, understeer

gradient, and yaw moment of inertia can be estimated using the vehicle state estimates

from the GPS/INS method. Table 5.5 is the summary of the estimation results with

various methods and conditions.

These estimated parameters can be used to improve control and estimation schemes,

such as stability control, steer-by-wire controller design and lateral control on an

automated highway, or diagnostic systems that monitor tire condition and friction

detection algorithms. However, note that the estimated cornering stiffnesses of tires

may not be the true physical values of the tires even though the estimated values fit

well with the bicycle model. The estimated tire cornering stiffnesses are the best fit

for the bicycle model but not the true physical cornering stiffnesses of the tires. This

follows from the fact that compliance and roll steer effects are lumped with cornering

stiffness in the bicycle model. In order to study the true physical tire properties with

cornering stiffness, more detailed models should be introduced including roll steer,

camber change effect, etc.
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Parameters to Estimate Estimation Method Note

Simple and fast
Cornering stiffness Least squares

Not very robust
Robust and consistent

Cornering stiffness Total least squares
Heavy computational power
Converge to correct values

Cornering stiffness and with sufficient excitation
weight distribution

Total least squares
Even when fail, give correct
understeer gradient estimate

Work well with
Cornering stiffness and sufficient excitation
yaw moment of inertia

Total least squares
Diverge without

sufficient excitation

Table 5.5: Summary of Estimation Results

5.3 Roll Parameter Estimation

5.3.1 Introduction

The previous section shows that the bicycle model parameters, such as cornering

stiffness and yaw moment of inertia, can be estimated using the vehicle states from

the two-antenna GPS setup with INS sensors. This section shows that parameters

related to vehicle roll dynamics can also be estimated using the vehicle states from

the GPS/INS setup. Since vehicle roll dynamics models are used in many rollover

prevention or warning systems [10, 12, 24], properly estimated roll parameters are

very critical for those systems.

5.3.2 Estimation Method

The following linear second order model (spring-damper-mass system) for roll dy-

namics is used for the estimation [52].

Ixφ̈k + brφ̇k + krφk = mayh + mghφk (5.20)
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where

Ix, br, kr = roll moment of inertia, damping ration and stiffness

φk = suspension roll angle

m = vehicle mass

ay = lateral acceleration of the vehicle

h = distance between roll center and center of mass

The roll angle, roll rate, and lateral acceleration can be measured from the GPS

receiver and INS sensors. Because the roll acceleration is not directly available, nu-

merical differentiation of the roll rate is used to get the roll acceleration. The roll

moment of inertia, damping ratio, and stiffness can be estimated using a least squares

estimator. Since the roll measurements include the road superelevation as well as the

suspension roll, experimental runs should be performed with sufficient length of time

and test path to average out the contribution from road superelevation changes.

5.3.3 Estimation Results

The roll stiffness and damping ratio are estimated by exciting the vehicle roll dy-

namics. An approximated value for the roll moment of inertia [18] is used because

normal driving does not create sufficient excitation to accurately identify the moment

of inertia. In order to minimize the interference from road superelevation changes,

several experimental runs are performed on a fairly flat surface.

The estimated roll stiffness and damping ratio are shown in Fig. 5.8. The least

squares fit is shown as a line going through the data points. To verify the result,

the roll stiffness is also estimated by performing a series of constant radius turns

at constant speed. The vehicle experiences different roll angles with various speeds

since the lateral acceleration varies along with the speed. Figure 5.9 shows the plot

of roll angle vs. lateral acceleration as well as the estimated roll stiffness. A line

going through the data points represents the least squares best fit of the roll rate.

The estimated roll stiffness from the constant speed turns is very similar to the roll



CHAPTER 5. VEHICLE PARAMETER ESTIMATION 83

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−5000

0

5000

Roll Stiffness: 75.545 kNm/radR
ol

l M
om

en
t (

N
m

)

Roll Angle (rad)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−5000

0

5000
Damping: 4475 Nms/rad

R
ol

l M
om

en
t (

N
m

)

Roll Rate (rad/sec)

Figure 5.8: Roll Moment of Inertia and Damping Ratio Estimates

−0.4 −0.2 0 0.2 0.4 0.6 0.8
−3

−2

−1

0

1

2

3

4

5

Roll Stiffness: 74.044 kNm/rad

R
ol

l A
ng

le
 (

de
g)

Lateral Acceleration (g)

Figure 5.9: Roll Angle vs. Lateral Acceleration



CHAPTER 5. VEHICLE PARAMETER ESTIMATION 84

stiffness estimated in Fig. 5.8. The difference between two roll stiffness estimates is

less than 5%.

In addition, several step steer maneuvers are performed to validate the estimation

result. Figure 5.10 and 5.11 show the measured roll angle and roll rate as well as the

simulated values using estimated parameters. It is clearly seen that major response
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Figure 5.10: Comparison of Step Steer Response

characteristics such as rise time, overshoot, and steady state value are well matched

between the measured and simulated roll angle and rate. Note that unevenness of

the test path creates differences between the measured and simulated values because

the unevenness is not included in the simulation. The slight discrepancies in the

roll rate comparisons, especially after the peaks, can be explained by nonlinearity in

the dampers because the simulation assumes a linear damper. When a vehicle has

nonlinearity in the damping characteristics, simulation with a linear model creates

some discrepancies against measured values. Nevertheless, the overall match is quite

good.
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Figure 5.11: Comparison of Step Steer Response

5.4 Conclusion

This chapter shows that parameters of the bicycle model – such as tire cornering stiff-

ness, weight distribution, and yaw moment of inertia – can be estimated using the

vehicle state estimates from the GPS/INS method. The conventional least squares

method can be used for the estimation, but the total least squares method yields

more robust and consistent estimates of the parameters due to the noise structure

of the estimation problem. In addition, it is shown that sufficient excitation is criti-

cal to estimate weight distribution and yaw moment of inertia. Estimates of weight

distribution and yaw moment of inertia fails to converge correct values without suffi-

cient excitation. However, it is shown that the understeer gradient can be estimated

correctly even without high levels of excitation. This chapter also shows that the

vehicle roll parameters – such as roll stiffness and roll damping ratio – can be es-

timated using the least squares method. Estimated parameters with parameterized

vehicle dynamics models can be used for a wide variety of applications such as vehicle

stability control and rollover prevention systems



Chapter 6

Estimation of Suspension Roll and

Road Bank

6.1 Introduction

Vehicle stability control systems and state estimators commonly use lateral accelera-

tion measurements from accelerometers to calculate lateral acceleration and sideslip

angle of the vehicle [47, 48]. These acceleration measurements, however, are easily

affected by disturbances such as road bank angle and suspension roll induced by sus-

pension deflection. Since these unwanted effects in acceleration measurements can

lead to false estimation of the vehicle states or misleading activation of the stability

control systems, knowledge of the suspension roll and road bank angles is extremely

important for such systems.

As a result, many researchers have pointed out that detection of the road bank

angle and suspension roll is necessary for the satisfactory performance of such sys-

tems [38, 47, 48]. Over the last few years, several methods were proposed to esti-

mate the road bank angle. Nishio et al. esimated the road bank angle by comparing

model-generated acceleration and lateral accelerometer measurements [38]. Tseng

used dynamic inverse transfer functions derived from the bicycle model to estimate

road bank angle [46]. Hahn et al. designed a disturbance observer for road bank an-

gle estimation using the bicycle model [26]. However, the suspension roll induced by

86
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suspension deflection was neglected or was lumped with the road bank angle in these

methods. While a lumped value can be used to compensate the acceleration measure-

ments [41], the separation of these two angles could be especially beneficial to vehicle

rollover warning and avoidance systems [10, 24]. Since a small lumped value does

not necessarily mean a small road bank angle, a vehicle may experience a significant

road bank angle even though the sum of the two angles is small. The vehicle rollover

warning or avoidance systems may need to be aware of this because a significant road

bank angle can create different behavior of the vehicle during transient maneuvering,

when most rollover accidents actually happen.

The main challenge in separating road bank angle and suspension roll angle is

that it is difficult to differentiate one from the other by using typical roll-related

measurements (lateral acceleration and roll rate). Since the lateral accelerometers are

usually attached to the vehicle body, the road bank angle and suspension roll have the

exact same effect on the lateral acceleration measurements and are not differentiable.

The roll rate gyros are also attached to the vehicle body and can only see changes of

the road bank and suspension roll angles together, not individual changes separately.

Therefore, suspension roll and road bank angles cannot be directly separated using

the kinematic relationships of the roll-related measurements.

Even though the suspension roll and road bank angles have similar and indistin-

guishable influences on the measurements, they play very different roles in the vehicle

dynamics. While the road bank angle can be treated as a disturbance or unknown

input to the vehicle, the suspension roll angle is a state resulting from the road bank

angle and other inputs, governed by vehicle dynamics. This implies that a parame-

terized vehicle dynamic model could conceivably be used to separate the suspension

roll and road bank angles. The previous chapters show that parameters of such a

model and vehicle states can be precisely estimated by combining GPS with inertial

sensors.

Based on these results, this chapter presents a new method for identifying road

bank and suspension roll separately using a disturbance observer and a vehicle dy-

namic model. First, a dynamic model, which includes suspension roll as a state and



CHAPTER 6. ESTIMATION OF SUSPENSION ROLL AND ROAD BANK 88

road bank as a disturbance, is introduced. The disturbance observer is then imple-

mented using the estimates of the sideslip angle and vehicle tilt angle (the sum of

road bank and suspension roll angles). These estimates are accurately determined

using GPS and INS as demonstrated in the previous chapters. From the disturbance

observer, road bank angle and suspension roll can be separately estimated.

6.2 Road and Vehicle Kinematics

Figure 6.1 shows a conceptual schematic diagram for a vehicle roll model with road

bank angle. It is assumed that the vehicle body rotates around the roll center of the

vehicle. In Fig. 6.1, h is the height of the center of gravity (CG) from the roll center.

φk and φr are the suspension roll angle and road bank angle respectively.

y

z

Y

Z

φr

Vehicle Body

h

Vehicle Frame

Roll Center

φk

Figure 6.1: Vehicle Roll Model

If a roll rate gyro is attached to the vehicle body in Fig. 6.1, one might assume

the roll rate gyro measures φ̇k + φ̇r, the sum of the rate of change of suspension roll

angle and the rate of change of road bank angle. However, this is not what the roll

rate gyro really measures. To illustrate this, assume a vehicle follows a circular path

on a large flat plane with a slope of 10 degrees from the horizontal, and the vehicle
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has no roll from suspension deflection (φk = 0). The vehicle will then experience a

road bank angle, φr, that changes from -10 to 10 degrees in one revolution of the

circle. In this case, φ̇r is definitely not zero since the road bank angle experienced

by the vehicle, φr, is continuously changing. However, the roll rate measurement is

always zero because the angular velocity vector of the vehicle is orthogonal to the

axis of the roll rate gyro and as a result the roll rate gyro cannot sense the change of

the road bank angle. As this example shows, a careful treatment of the kinematics

is necessary before a disturbance observer for estimating the vehicle and road bank

angles can be implemented.

In this work, the vehicle frame is assumed to keep contact with the ground. Under

this assumption, the roll and pitch motions of the vehicle frame are totally constrained

by the road, and the road bank angle and road grade are the same as the roll and

pitch angles of the vehicle frame in the inertial frame. Consequently, the attitude of

the vehicle frame with respect to the inertial coordinates is first defined by the Euler

angles in this work, and the rate of change of the road bank angle is expressed in

terms of the angular velocities of the vehicle frame.

When the rotation of the vehicle frame is given by the Euler angles (ψ, θ, φ)

about vehicle-frame-fixed axes according to the ISO standard (ISO 8855) [30], where

the first rotation is by an angle ψ about the z axis, the second is by an angle θ

about the y axis, and the third is by an angle φ about the x axis, the transformation

matrix from the inertial coordinates to the vehicle-frame-fixed coordinates is given in

Eq. (6.1).

Q30 = Q32Q21Q10

Q10 =




cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1




Q21 =




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 (6.1)
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Q32 =




1 0 0

0 cos φ sin φ

0 − sin φ cos φ




The subscript 0 indicates the inertial coordinates and the subscript 3 represents the

vehicle-frame-fixed coordinates. Similarly, the subscript 1 describes the intermediate

coordinates given by the rotation about the z axis from the inertial coordinates 0, and

the subscript 2 denotes the intermediate coordinates given by the rotation about the

y axis from the intermediate coordinates 1.

The angular velocity vector of the vehicle frame with respect to the inertial coor-

dinates, which is expressed in the vehicle-frame-fixed coordinates, is defined as:

ω30,3 = [ pf qf rf ]T (6.2)

where pf , qf , and rf represent the x, y, and z components of the angular velocity

vector, ω30,3. The first two subscripts 30 mean that ω30,3 is the angular velocity of

3 (the vehicle frame) with respect to 0 (the inertial frame), and the last subscript 3

means the vector is expressed in 3 (the vehicle-frame-fixed coordinates).

Using Eq. (6.1), the relationship between the vehicle-frame-fixed angular veloc-

ity vector, ω30,3, and the rate of change of the Euler angles, [ ψ̇ θ̇ φ̇ ]T , can be

determined by resolving the Euler rates into the vehicle-frame-fixed coordinates:




pf

qf

rf


 = Q32




φ̇

0

0


 + Q32Q21




0

θ̇

0


 + Q32Q21Q10




0

0

ψ̇


 = J




φ̇

θ̇

ψ̇


 (6.3)

The Euler rates can be then determined from the vehicle-frame-fixed angular velocity

vector by inverting J :




φ̇

θ̇

ψ̇


 =




1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ/ cos θ cos φ/ cos θ






pf

qf

rf


 (6.4)
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∴ φ̇ = pf + sin φ tan θ qf + cos φ tan θ rf (6.5)

When the Euler angle θ is not zero, the Euler angle φ is not the same as the

road bank angle, φr, illustrated in Fig. (6.1), because the road bank angle is defined

between the vehicle frame and the intermediate coordinates 1. Similarly, φ̇r is not the

same as φ̇ unless θ is zero. However, φ̇r is the x component of the angular velocity,

ω31,1, since ω31,1 represents the angular velocity of the vehicle frame with respect to

the intermediate coordinates 1. Therefore, the rate of change of the road bank angle,

φ̇r, is given by the following equation:

ω31,1 =




φ̇r

θ̇r

ψ̇r


 = Q12




φ̇

0

0


 +




0

θ̇

0




= Q−1
21




φ̇

0

0


 +




0

θ̇

0


 =




cos θ φ̇

θ̇

− sin θ φ̇


 (6.6)

∴ φ̇r = cos θ φ̇ (6.7)

where φr and θr represent the road bank angle and road grade respectively. Using

Eq. (6.5), Eq. (6.7) can be rewritten as:

φ̇r = cos θ pf + sin φ sin θ qf + cos φ sin θ rf (6.8)

Since the yaw rate gyro and the roll rate gyro are attached to the vehicle body,

the yaw and roll rates of the vehicle frame, rf and pf respectively, cannot be exactly

measured. The yaw and roll rate gyros measure the yaw and roll rates of the vehicle

body and the measurements include the effects of roll motion of the vehicle body.

Since the vehicle-body-fixed coordinates are defined from a rotation by the angle

φk about the x axis of the vehicle-frame-fixed coordinates, the transformation matrix

from the vehicle-frame-fixed coordinates to the vehicle-body-fixed coordinates is given
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by:

Q43 =




1 0 0

0 cos φk sin φk

0 − sin φk cos φk


 (6.9)

where the subscript 4 indicates the vehicle-body-fixed coordinates.

Using Eq. (6.9), The yaw rate of the vehicle body, rb, and the roll rate of the

vehicle body, pb, can be written as:

ω40,4 =




pb

qb

rb


 =




φ̇k

0

0


 + Q43




pf

qf

rf


 (6.10)

∴ pb = pf + φ̇k (6.11)

rb = cos φk rf − sin φk qf (6.12)

where pb and rb are are the roll rate and yaw rate of the vehicle body. Note that

Eq. (6.11) says that the roll rate of the vehicle body, pb, is not the same as φ̇k + φ̇r,

the sum of the rate of the suspension roll angle change and the rate of the road bank

angle change, as explained in the beginning of this section.

Eq. (6.8) can be rewritten by defining a new variable εr and assuming the vehicle

pitch angle θ is small and so cos θ is close to one:

φ̇r ≈ pf + εr (6.13)

where

εr = sin φ sin θ qf + cos φ sin θ rf

Eq. (6.12) can be also simplified as Eq. (6.14) assuming the suspension roll angle, φk,

and the pitch rate, qf , are small:

rb ≈ rf (6.14)

Therefore, the yaw rate and roll rate measurements can be described using Eqs. (6.11),
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(6.13), and (6.14).

rm = rb ≈ rf

pm = pb = pf + φ̇k (6.15)

= φ̇k + φ̇r − εr = φ̇ − εr

where

rm = yaw rate gyro measurement

pm = roll rate gyro measurement

φ̇ = φ̇k + φ̇r

6.3 Vehicle Model

The dynamics of a vehicle are represented here by the single track, or bicycle model

with a roll mode [10]. It is assumed that the slip angles on the inside and outside

wheels are approximately the same. The equations of motion can be linearized as in

Eqs. (6.16), (6.17), and (6.18) assuming the road changes smoothly.

β̇ = − IeqC0

Ixmux

β −
(

1 +
IeqC1

Ixmu2
x

)
rf +

h(mgh − kr)

Ixux

φk − hb

Ixux

φ̇k

+
IeqCαf

Ixmux

δ − g

ux

φr (6.16)

ṙf = −C1

Iz

β − C2

Izux

rf +
aCαf

Iz

δ (6.17)

φ̈k = −C0h

Ix

β − C1h

Ixux

rf +
mgh − kr

Ix

φk − br

Ix

φ̇r +
Cαfh

Ix

δ − ṗf (6.18)

where

C0 = Cαf + Cαr, C1 = aCαf − bCαr

C2 = a2Cαf + b2Cαr, Ieq = Ix + mh2
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β is the sideslip angle at the center of the vehicle frame, and rf is the yaw rate of the

vehicle frame. Ix is the moment of inertia about the roll axis, kr is the roll stiffness,

and br is the roll damping coefficient. h is the height of CG from the roll center.

Note that the lateral force from gravity due to the road bank angle, φr, appears in

Eq. (6.16), which describes the vehicle lateral dynamics, and the time derivative of

pf affects the vehicle roll dynamics in Eq. (6.18). The change of pf , the roll rate of

the vehicle frame, is related to the change of the road bank angle through Eq. (6.13)

since the vehicle frame is assumed to keep contact on the ground.

From Eqs. (6.16), (6.17), and (6.18), the following four-state linear model can be

written in the state space form:

ẋ = Ax + Bδ + Bw1φr + Bw2ṗf (6.19)

where

x =
[

β rf φk φ̇k

]T

A =




− IeqC0

Ixmux
−1 − IeqC1

Ixmu2
x

h(mgh−kr)
Ixux

− hb
Ixux

−C1

Iz
− C2

Izux
0 0

0 0 0 1

−C0h
Ix

− C1h
Ixux

mgh−kr

Ix
− br

Ix




B =
[

IeqCαf

Ixmux

aCαf

Iz
0

Cαf h

Ix

]T

Bw1 =
[
− g

ux
0 0 0

]T

Bw2 =
[

0 0 0 −1
]T

Note that the road bank angle, φr, and the time derivative of pf are treated as

disturbances or unknown inputs to the vehicle dynamics while the suspension roll

angle, φk, is a state resulting from the road bank angle and other inputs.
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6.4 Disturbance Observer

The road bank angle, φr, and the time derivative of pf are the two disturbances to

the vehicle dynamics described in Eq. (6.19). Since the road changes independently,

the disturbances due to the road vary independently of the vehicle dynamics. How-

ever, the two disturbances are not independent of each other as shown in Eq. (6.13).

Therefore, dynamics of the disturbances can be described as follows assuming that

the disturbances due to the road changes are the result of white noise forcing p̈f and

ε̇r [26].

ẇ = Aww (6.20)

where

w =




φr

pf

ṗf

εr


 , Aw =




0 1 0 1

0 0 1 0

0 0 0 0

0 0 0 0




From Eqs. (6.19) and (6.20), a disturbance observer can be implemented by aug-

menting the disturbances to the state vector. A new state vector z is defined by

augmenting w to the vehicle state vector x.

ż =

[
A Bw

0 Aw

]
z +

[
B

0

]
δ = Fz + Gδ (6.21)

where

z =
[

x w
]T

, Bw =
[

Bw1 0 Bw2 0
]
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The available measurements are:

y =




β

rm

φ

pm


 =




β

rf

φk + φr

φ̇k + pf


 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0


 z = Hz (6.22)

The yaw rate, rf , and the sum of the suspension roll rate and the rate of change

of the roll angle of the vehicle frame, φ̇k + pf , are from the rate gyros according to

Eq. (6.15). The sideslip angle, β, and the sum of the suspension roll and road bank

angle, φk + φr, are from the integration of GPS and INS.

Since the new system from Eqs. (6.21) and (6.22) is observable, a disturbance

observer is given by the following equation:

˙̂z = F ẑ + Gu + L(y − Hẑ) (6.23)

The corresponding error dynamics are then described as follows:

˙̃z = (F − LH)z̃ (6.24)

where

z̃ = z − ẑ

When the observer gain, L, is selected so that F − LH has stable eigenvalues and

the error dynamics are significantly faster than the system dynamics, or by applying

a Kalman filter, the error dynamics approach zero [22]. In this work, a Kalman filter

is applied to determine the observer gain.

6.5 Experimental Results

A Mercedes E-class wagon is used for the experimental tests. The test vehicle is

equipped with a 3-axis accelerometer/gyro triad and a two-antenna GPS system. The
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parameters of the vehicle model are accurately estimated using GPS measurements

from a two-antenna system combined with INS sensors as described in the earlier

section.

Figure 6.2 shows experimental results for estimating suspension roll and road bank

angles using the proposed disturbance observer. Experimental tests consisting of four

laps around an uneven surface are performed.
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Figure 6.2: suspension roll and Bank Angle Estimates

The lower plot shows estimated suspension roll and road bank angles individually,

and the upper plot shows the sum of those two estimated values compared with the

measured value using the two-antenna GPS setup combined with INS. Note that

the sum of suspension roll and road bank angles is mainly positive even though the

road bank angle alone fluctuates almost evenly between positive and negative values.

As easily seen in Fig. 6.2 at around 30, 50, and 70 seconds, a small value of the

roll angle measurement – the sum of suspension roll and road bank angles – does

not necessarily mean a small suspension roll angle and small road bank angle. A

significant road bank angle can be a major factor in transient maneuvering, which is

the cause of most rollover accidents.
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To verify the estimates of the road bank angle, the true road bank angle is mea-

sured using a two-antenna GPS setup. The two GPS antennas are placed laterally on

the top of the vehicle, and record the static roll angle as the vehicle moves along the

marked path at a very low speed to avoid exciting vehicle roll dynamics. Since the

measured roll angle from GPS contains both the road bank angle and the suspension

roll angle, the suspension roll angle is then calculated from the estimated roll stiffness

and subtracted from total roll angle [42]. The remaining angle is assumed to be the

true road bank angle and is validated by repeating this test in the opposite direction

of travel.
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Figure 6.3: Verification of Road Bank Angle Estimates

The estimated road bank angle from the proposed method is verified with this

measured road bank angle in Fig. 6.3. The estimates match to within the accuracy

of the static road bank measurement technique, suggesting that dynamic separation

works well. In addition, slalom maneuvers on a fairly flat surface are performed to

validate the estimation method. Figure 6.4 shows estimated suspension roll and road

bank angles from the slalom maneuvers as well as measurements of the vehicle lateral

acceleration.

As expected, the estimated road bank angle is very small (mostly less than one
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Figure 6.4: Measured Lateral Acceleration and Estimates of suspension roll and Bank
Angles

degree), which reflects the fact that the test is performed on a fairly flat surface.

The estimated suspension roll angle also shows strong correlation with the measured

lateral acceleration, which can be predicted from the vehicle roll dynamics only when

the effects from road bank are insignificant. In fact, small fluctuations in the estimated

road bank angle can be explained by unevenness of the test surface. The slalom tests

are performed on a runway at Moffett airfield, and the runway has road crown for

water drainage. Therefore, the road crown is estimated as road bank angle. The

estimated road bank angle is shown to have a strong correlation with vehicle heading

and position, which can be easily explained by the fact that there exists almost

identical road crown along the whole runway.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

With the combination of a two-antenna GPS receiver and four automotive grade

inertial sensors (two rate gyros and two accelerometers), it is possible to develop

an estimate of vehicle sideslip corrected for roll and grade effects. The proposed

method provides high update estimates of sideslip, longitudinal velocity, roll and

grade and compares well to predictions from calibrated models and Kalman filter

analysis. The complete system calibrates the inertial sensor sensitivities and biases

at appropriate update rates and can handle loss of the GPS signal for periods of time

by simply integrating the calibrated inertial sensors. The vehicle states obtained

by this system represent a new level of fidelity for vehicle control and have been

successfully implemented in steer-by-wire control. A full state feedback controller has

been developed to alter a vehicle’s handling characteristics by augmenting the driver’s

steering input. This work represents one of the first applications of GPS-based state

estimation to dynamic control of a vehicle with active steering. Future work will

investigate the possible extent of vehicle handling modification by active steering and

any fundamental limitations imposed by the feedback or control structure.

Once the vehicle states are precisely estimated, key vehicle parameters – such as

tire cornering stiffness, understeer gradient, yaw moment of inertia, roll stiffness, and

roll damping coefficient – can be estimated easily with proper excitation using the

100



CHAPTER 7. CONCLUSION AND FUTURE WORK 101

estimated states. With these properly estimated parameters, parameterized vehicle

dynamics models can be used for a wide variety of applications including highway

automation, vehicle stability control, and rollover prevention systems. Finally, a

properly formulated disturbance observer and measurements from the GPS and INS

sensors can separately estimate road bank angle and suspension roll. These results can

be used for a wide variety of applications including vehicle stability control systems,

state estimators, and vehicle rollover warning and avoidance systems.

7.2 Future Work

This thesis shows that accurate vehicle state and parameter estimation is possible

using GPS/INS. A natural direction for this work is to use these estimates to improve

stability control systems. This is especially true on steer-by-wire vehicles, in which the

presence of active steering as well as differential braking allows more full utilization

of the state estimates. Also, in a carefully designed steer-by-wire system, the aligning

moment disturbance at the tires can be measured effectively by measuring the steering

motor current. This is true regardless of whether the vehicle is being operated in the

linear or nonlinear handling region [55]. The measured aligning moment can then

be translated to the lateral force at the tires. The estimated lateral force along with

the estimated states can be used by not only stability control systems but also tire

parameter estimators particularly in the unpredictable nonlinear region.

In addition, the cornering stiffness estimation can be improved by considering

more detailed vehicle models than the bicycle model. The bicycle model is a simplified

model and does not include the complete dynamics of the vehicle and tires such as

roll steer and chamber changes. In order to study the true physical cornering stiffness

of the tire, not the best fit parameter for the bicycle mode, more detailed models

must be considered.



Appendix A

Nonlinear Total Least Squares

This appendix covers the nonlinear total least squares method, which is used to

estimate cornering stiffness and weight distribution. This appendix consists of two

sections. The first section explains the nonlinear least squares method, which is a

basis of nonlinear total least squares, and the second section covers the nonlinear

total least squares method.

A.1 Nonlinear Least Squares

Suppose y is measured and the parameter, θ, needs to be estimated based on the

following nonlinear equation:

y = f(θ) (A.1)

Since the measurement of y contains error, ∆y, the parameter estimation problem

can be reformulated as the following minimization problem in least-squares sense:

min
θ

‖ŷ − f(θ)‖ = min ‖∆y‖
Subject to: ŷ = f(θ) + ∆y (A.2)

where

ŷ = measurement of y
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∆y = measurement error

The above nonlinear minimization problem can be solved by locally linearizing the

constraint function and iteratively solving for the parameter, θ, which minimizes

‖∆y‖.
Linearizing f(θ) gives:

f(θ + ∆θ) = f(θ) + Df |θ ∆θ (A.3)

where

Df =
∂f

∂θ
= gradient of f

Then, y can be written as follows to iteratively solve for θ:

y = f(θk) + Df |θk
∆θ (A.4)

where

θk = current guess for θ

∆θ = θk+1 − θk

From the above equation:

∆θ = Df |θk

† (ŷ − f(θk)) (A.5)

where

Df |θk

† = linear least squares pseudo-inverse of Df |θk
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Each iteration step will be then:

θk+1 = θk + Df |θk

† (ŷ − f(θk)) (A.6)

Equation (A.6) is initialized with the initial value, θ0, and is iterated until the solution

converges. For most cases, this equation converges in less than ten steps if this

algorithm converges.

However, Eq. (A.6) fails to converge sometimes if the function is locally not close

to convex. Then, damping can be added to the equation to make sure that the

solution converges.

θk+1 = θk + αDf |θk

† (ŷ − f(θk)) (A.7)

where the damping coefficient, α, is between 0 and 1. For the cornering stiffness and

yaw moment of inertia estimation problems, 0.8 works well.

A.2 Nonlinear Total Least Squares

Suppose x and y are measured and the parameter, θ, needs to be estimated based on

the following nonlinear equation:

y = f(x, θ) (A.8)

Since the measurements, x and y, contain errors, ∆x and ∆y respectively, the param-

eter estimation problem can be reformulated as the following minimization problem:

min
x,θ

∥∥∥∥∥ ŷ − f(x, θ)

x̂ − x

∥∥∥∥∥ = min

∥∥∥∥∥ ∆y

∆x

∥∥∥∥∥
Subject to: ŷ − ∆y = f(x̂ − ∆x, θ) (A.9)

where

x̂, ŷ = measurement of x and x

∆x, ∆y = measurement errors
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Equation (A.9) can be rewritten by introducing new variables, Ŷ and z, and new

function g(z) as follows:

min
z

∥∥∥Ŷ − g(z)
∥∥∥ = min ‖∆Y ‖

Subject to: Ŷ = g(z) + ∆Y (A.10)

where

Ŷ = [ ŷ x̂ ]T

∆Y = [ ∆y ∆x ]T

z = [ x θ ]T

g(z) = [ f(x, θ) x ]T

Equation (A.10) is then equivalent to the nonlinear least squares problem as in

Eq. (A.2). Using the nonlinear least squares method, the following equation is it-

erated until the solution converges:

zk+1 = zk + αDg|zk

†
(
Ŷ − g(zk)

)
(A.11)

where

Dg =
∂g

∂z
=

[
∂f
∂x

∂f
∂θ

I 0

]

Similarly to Eq. (A.7), this equation converges in less than ten steps if this algorithm

converges.
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