Motivation

Every day in the US, 10 teenagers are killed in teen-driven vehicles in crashes. Loss of control accounts for 30% of these deaths. Inexperienced drivers make more driving errors, exceed speed limits & run off roads at higher rates.

In 2003, motor vehicle traffic crashes were the leading cause of death for ages 5-33.

To prevent loss of control, we need to understand what determines vehicle motion.

Motion of a Vehicle

- Motion of a vehicle is governed by tire forces.
- Tire forces result from deformation in contact patch.
- Lateral tire force is a function of tire slip.

Tire Curve

- Maximum tire grip.
- Linear, Nonlinear, Loss of control.
Previous work with GPS

Global Positioning System (GPS)

- With Inertial Navigation System (INS), have tire slip angle estimates (Ryu 2002)
- Cornering stiffness in the linear region of handling (Bevly 2001)
- Coefficient of friction estimated in real-time (Hahn 2002 & Hsu 2006)

Need an online estimation process for friction and slip angle without GPS

Features of the Observer

- Uses measurements readily available on production vehicles
 - Gyroscopes, accelerometers, steering encoder, steering torque (thru EPS or SBW)
- Takes advantage of total aligning torque
 - Key piece of information for μ, α estimation
- Accuracy of μ, α estimates are comparable to GPS measurements up to limits of handling
Roadmap

- Derive overall observer scheme
 1. Steering system model
 2. Linear disturbance observer
 3. Nonlinear μ, α-observer

Experimental Results

- Ability to estimate μ and α up to the limits of handling

Observer Scheme

\[\tau_d = \tau_a + \tau_j \]

\[\tau_a \]

\[\hat{\alpha}_f \]

\[\hat{\alpha}_r \]

\[\hat{\mu} \]
1. Form Steering System Model

Steering System Model

We model the torque contributions around the steer axis:
Generated by steer-by-wire motor
1. Motor torque actuator torque $\tau_{act}(i)$
Generated by tire forces
2. Vertical forces jacking torque $\tau_j(\delta)$
3. Lateral forces total aligning torque τ_a
Total Aligning Torque

Results from lateral tire forces acting at a distance known as total trail

\[\tau_a = -(m + p)F_{yf} \]

- Varies with steer angle \(\delta \)
 - Known from ADAMS
- Varies with slip angle \(\alpha \) and friction coefficient \(\mu \)
- Also varies with slip angle \(\alpha \) and friction coefficient \(\mu \)
Simple τ_a model

$$\tau_a = -(t_m + t_p) F_y f$$

(Plot shown with $t_m = 0$)

Complete Steering Model

To form complete steering model
- Combine torque contributions ($\tau_a, \tau_j, \tau_{act}$)
- Include effective steering system inertia and damping:

$$J_{eff} \ddot{\delta} + b_{eff} \dot{\delta} = \tau_a(C_\alpha, \alpha, \mu, \delta) + \tau_j(\delta) + \tau_{act}(i, \delta)$$

Total aligning moment Jacking torque Actuator torque
2: Describe Disturbance Observer

Disturbance Observer

\[J_{ef} f \ddot{\delta} + b_{ef} f \dot{\delta} = \tau_a (C_{\alpha, \mu}, \alpha, \delta) + \tau_j (\delta) + \tau_{act} (i, \delta) \]

- Objective is to estimate total aligning torque \(\tau_a \) from available measurements
- Construct Luenberger observer
 - Inputs: motor current \(i \) and steer angle \(\delta \)
 - Outputs: total aligning moment \(\tau_a \)
3: Form Nonlinear μ, α-Observer

A combination of total aligning torque with lateral force can be used to decode friction and slip angle information.

Extracting (μ, α) from τ_a & F_{yf}
Nonlinear μ,α-Observer

Update Laws for $\hat{\alpha}_f$, $\hat{\mu}$

$$\dot{\hat{\alpha}}_f = \left(\frac{1}{mV} + \frac{a^2}{I_zV} \right) \hat{F}_{yf} + \left(\frac{1}{mV} - \frac{ab}{I_zV} \right) \hat{F}_{yr} - r - \delta$$

$$\dot{\hat{\mu}} = 0$$

$$\dot{\hat{\alpha}}_r = \hat{\alpha}_f + \delta - \left(a + b \right) \frac{r}{V}$$

Observer Summary

- Derived steering system dynamics ($\tau_\alpha, \tau_j, \tau_{\text{act}}$)
- From these dynamics, formed linear disturbance observer
 - Inputs motor current and steer angle
 - Outputs total aligning moment measurements
- Based on simple models, we derived nonlinear μ,α-observer
 - Uses disturbance observer’s τ_α measurements to update μ,α estimates
 - Nonlinear gains based on current μ,α estimates
Experimental Results

- Apply overall observer to experimental maneuver on P1
Ramp: Friction Estimates

- $\mu_o = 0.6$
- Relatively steady around $\mu = 1$ (agrees with skidpad)

Ramp: Slip Angle Estimates

- Linear
- Nonlinear
- Saturation
Observer Performance

- Observer’s slip angle estimates match well with GPS-based measurements
 - Up to handling limits (peak F_{yf})
- Friction estimates converge once observer has enough lateral dynamic information
 - On dry pavement, ~ 0.5 g
 - Expected to converge faster on low-μ surfaces

Applications

- Observer uses measurements available in production vehicles
 - can be integrated with GPS-based observers
 - used during periods of GPS signal loss
- Provides two quantities (μ, α) very useful in vehicle dynamics control systems
 - Enhance active safety systems
Current Work

- Experimentally validate observer on high-μ surfaces
- Prove stability of nonlinear observer
- Integrate observer with control system that stabilizes vehicle at limits of handling